Lecture 22. Vector bundles and G-torsors on the relative Fargues-Fontaine curve

P. Scholze, Jared Weinstein
{"title":"Lecture 22. Vector bundles and G-torsors on the relative Fargues-Fontaine curve","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.25","DOIUrl":null,"url":null,"abstract":"This chapter discusses vector bundles and G-torsors on the relative Fargues-Fontaine curve. This is in preparation for the examination of moduli spaces of shtukas. Kedlaya-Liu prove two important foundational theorems about vector bundles on the Fargues-Fontaine curve. The first is the semicontinuity of the Newton polygon. The second theorem of Kedlaya-Liu concerns the open locus where the Newton polygon is constant 0. For the applications to the moduli spaces of shtukas, one needs to generalize the results to the case of G-torsors for a general reductive group G. The chapter then identifies the classification of G-torsors. It also looks at the semicontinuity of the Newton point.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"15 29","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter discusses vector bundles and G-torsors on the relative Fargues-Fontaine curve. This is in preparation for the examination of moduli spaces of shtukas. Kedlaya-Liu prove two important foundational theorems about vector bundles on the Fargues-Fontaine curve. The first is the semicontinuity of the Newton polygon. The second theorem of Kedlaya-Liu concerns the open locus where the Newton polygon is constant 0. For the applications to the moduli spaces of shtukas, one needs to generalize the results to the case of G-torsors for a general reductive group G. The chapter then identifies the classification of G-torsors. It also looks at the semicontinuity of the Newton point.
22日讲座。相对Fargues-Fontaine曲线上的向量束和g - torors
本章讨论相对Fargues-Fontaine曲线上的向量束和g - torors。这是为检验shtuka的模空间做准备。Kedlaya-Liu证明了Fargues-Fontaine曲线上关于向量束的两个重要基本定理。第一个是牛顿多边形的半连续性。Kedlaya-Liu的第二个定理是关于牛顿多边形为常数0的开轨迹。为了将结果推广到一般约化群g的模空间,需要将结果推广到一般约化群g的g -环量的情况。它也考虑了牛顿点的半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信