Blockwise subspace identification for active noise control

R. Fraanje, M. Verhaegen, N. Doelman
{"title":"Blockwise subspace identification for active noise control","authors":"R. Fraanje, M. Verhaegen, N. Doelman","doi":"10.1109/CDC.2000.914158","DOIUrl":null,"url":null,"abstract":"In this paper, a subspace identification solution is provided for active noise control (ANC) problems. The solution is related to so-called block updating methods, where instead of updating the (feedforward) controller on a sample by sample base, it is updated each time based on a block of N samples. The use of the subspace identification based ANC methods enables non-iterative derivation and updating of MIMO compact state space models for the controller. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The design of a feedforward controller via the proposed approach is illustrated for an acoustic duct benchmark problem, supplied by TNO Institute of Applied Physics (TNO-TPD), the Netherlands. We also show how to cope with intrinsic feedback. A comparison study with various ANC schemes, such as block filtered-U, demonstrates the increased robustness of a subspace derived controller.","PeriodicalId":217237,"journal":{"name":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","volume":"57 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2000.914158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a subspace identification solution is provided for active noise control (ANC) problems. The solution is related to so-called block updating methods, where instead of updating the (feedforward) controller on a sample by sample base, it is updated each time based on a block of N samples. The use of the subspace identification based ANC methods enables non-iterative derivation and updating of MIMO compact state space models for the controller. The robustness property of subspace identification methods forms the basis of an accurate model updating mechanism, using small size data batches. The design of a feedforward controller via the proposed approach is illustrated for an acoustic duct benchmark problem, supplied by TNO Institute of Applied Physics (TNO-TPD), the Netherlands. We also show how to cope with intrinsic feedback. A comparison study with various ANC schemes, such as block filtered-U, demonstrates the increased robustness of a subspace derived controller.
主动噪声控制的块子空间识别
本文提出了一种针对有源噪声控制问题的子空间识别方法。该解决方案与所谓的块更新方法有关,在这种方法中,不是逐个样本基更新(前馈)控制器,而是每次基于N个样本的块更新控制器。使用基于子空间识别的ANC方法可以实现控制器的MIMO紧凑状态空间模型的非迭代推导和更新。子空间识别方法的鲁棒性为使用小批量数据的精确模型更新机制奠定了基础。根据荷兰TNO应用物理研究所(TNO- tpd)提供的一个声学管道基准问题,采用所提出的方法设计了一个前馈控制器。我们还展示了如何处理内在反馈。通过与块滤波- u等不同的自适应控制方案的比较研究,证明了子空间衍生控制器鲁棒性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信