{"title":"A Coinductive Approach to Proof Search","authors":"J. E. Santo, R. Matthes, L. Pinto","doi":"10.4204/EPTCS.126.3","DOIUrl":null,"url":null,"abstract":"We propose to study proof search from a coinductive point of view. In this paper, we consider intuitionistic logic and a focused system based on Herbelin's LJT for the implicational fragment. We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of expressing alternatives for the description of the \"solution spaces\" (called Bohm forests), which are a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given formula (more generally: of a given sequent). As main result we obtain, for each given formula, the reduction of a coinductive definition of the solution space to a effective coinductive description in a finitary term calculus with a formal greatest fixed-point operator. This reduction works in a quite direct manner for the case of Horn formulas. For the general case, the naive extension would not even be true. We need to study \"co-contraction\" of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously in the semantic interpretation of fixed-point variables and not of the fixed-point operator.","PeriodicalId":119563,"journal":{"name":"Fixed Points in Computer Science","volume":"79 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Points in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.126.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We propose to study proof search from a coinductive point of view. In this paper, we consider intuitionistic logic and a focused system based on Herbelin's LJT for the implicational fragment. We introduce a variant of lambda calculus with potentially infinitely deep terms and a means of expressing alternatives for the description of the "solution spaces" (called Bohm forests), which are a representation of all (not necessarily well-founded but still locally well-formed) proofs of a given formula (more generally: of a given sequent). As main result we obtain, for each given formula, the reduction of a coinductive definition of the solution space to a effective coinductive description in a finitary term calculus with a formal greatest fixed-point operator. This reduction works in a quite direct manner for the case of Horn formulas. For the general case, the naive extension would not even be true. We need to study "co-contraction" of contexts (contraction bottom-up) for dealing with the varying contexts needed beyond the Horn fragment, and we point out the appropriate finitary calculus, where fixed-point variables are typed with sequents. Co-contraction enters the interpretation of the formal greatest fixed points - curiously in the semantic interpretation of fixed-point variables and not of the fixed-point operator.