DNN-based Implementation of Data-Driven Iterative Learning Control for Unknown System Dynamics

Junkang Li, Yong Fang, Yu Ge, Yuzho Wu
{"title":"DNN-based Implementation of Data-Driven Iterative Learning Control for Unknown System Dynamics","authors":"Junkang Li, Yong Fang, Yu Ge, Yuzho Wu","doi":"10.1109/DDCLS49620.2020.9275089","DOIUrl":null,"url":null,"abstract":"As the condition of iterative learning control, it is usually necessary to estimate the parameters of the system model to determine whether the system satisfies the global Lipschitz condition and estimate the upper and lower bounds of the rate of change of the system. However, for systems with unknown dynamics, the data-driven iterative learning control based on system input and output cannot be realized fully. In this paper, using the nonlinear mapping and feature extraction ability of deep learning, only input / output data is used to determine whether the uncertain system satisfies the global Lipschitz condition and estimate the upper and lower bounds of the system's rate of change, so as to realize the iterative learning control of the system. The simulation results verify the validity of estimating whether the system satisfies the ILC condition only based on the input / output data of the system.","PeriodicalId":420469,"journal":{"name":"2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"108 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS49620.2020.9275089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

As the condition of iterative learning control, it is usually necessary to estimate the parameters of the system model to determine whether the system satisfies the global Lipschitz condition and estimate the upper and lower bounds of the rate of change of the system. However, for systems with unknown dynamics, the data-driven iterative learning control based on system input and output cannot be realized fully. In this paper, using the nonlinear mapping and feature extraction ability of deep learning, only input / output data is used to determine whether the uncertain system satisfies the global Lipschitz condition and estimate the upper and lower bounds of the system's rate of change, so as to realize the iterative learning control of the system. The simulation results verify the validity of estimating whether the system satisfies the ILC condition only based on the input / output data of the system.
基于dnn的未知系统动力学数据驱动迭代学习控制实现
作为迭代学习控制的条件,通常需要估计系统模型的参数,以确定系统是否满足全局Lipschitz条件,并估计系统变化率的上界和下界。然而,对于动态未知的系统,基于系统输入输出的数据驱动迭代学习控制无法完全实现。本文利用深度学习的非线性映射和特征提取能力,仅使用输入/输出数据来确定不确定系统是否满足全局Lipschitz条件,并估计系统变化率的上界和下界,从而实现系统的迭代学习控制。仿真结果验证了仅根据系统输入/输出数据估计系统是否满足ILC条件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信