Prediphant: Short Term Heavy User Prediction

D. Sanvito, G. Siracusano, Roberto Gonzalez, R. Bifulco
{"title":"Prediphant: Short Term Heavy User Prediction","authors":"D. Sanvito, G. Siracusano, Roberto Gonzalez, R. Bifulco","doi":"10.1109/CSNDSP54353.2022.9907909","DOIUrl":null,"url":null,"abstract":"Traffic prediction is of paramount importance for the correct management of network infrastructures. Most research efforts try to forecast the aggregated traffic over the network and over large time windows. In this work, we tackle the problem the other way around. That is, we predict the behaviour of individual users over short time windows. First, we investigate the contribution of the most data eager users to the global network traffic. We do it by analyzing network traces coming from several thousand real users. Then, we design a technique, based on a combination of Natural Language Processing (NLP) and Long Short-Term Memory (LSTM) machine learning models, that leverages past navigation patterns to predict sudden changes in the amount of resources consumed by each user. Finally, we evaluate our method using real data finding it is able to predict about 80% of the users that will rump up their network needs in most realistic scenarios.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"381 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9907909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traffic prediction is of paramount importance for the correct management of network infrastructures. Most research efforts try to forecast the aggregated traffic over the network and over large time windows. In this work, we tackle the problem the other way around. That is, we predict the behaviour of individual users over short time windows. First, we investigate the contribution of the most data eager users to the global network traffic. We do it by analyzing network traces coming from several thousand real users. Then, we design a technique, based on a combination of Natural Language Processing (NLP) and Long Short-Term Memory (LSTM) machine learning models, that leverages past navigation patterns to predict sudden changes in the amount of resources consumed by each user. Finally, we evaluate our method using real data finding it is able to predict about 80% of the users that will rump up their network needs in most realistic scenarios.
预见:短期重度用户预测
流量预测对于网络基础设施的正确管理至关重要。大多数研究都试图预测网络和大时间窗口内的聚合流量。在这项工作中,我们以另一种方式解决问题。也就是说,我们在短时间内预测单个用户的行为。首先,我们研究了最渴望数据的用户对全球网络流量的贡献。我们通过分析来自几千个真实用户的网络痕迹来做到这一点。然后,我们基于自然语言处理(NLP)和长短期记忆(LSTM)机器学习模型的组合设计了一种技术,该技术利用过去的导航模式来预测每个用户消耗的资源量的突然变化。最后,我们使用真实数据评估我们的方法,发现它能够预测在大多数现实场景中大约80%的用户将增加他们的网络需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信