Jianqing Gao, Jun Du, Changqing Kong, Huaifang Lu, Enhong Chen, Chin-Hui Lee
{"title":"An experimental study on joint modeling of mixed-bandwidth data via deep neural networks for robust speech recognition","authors":"Jianqing Gao, Jun Du, Changqing Kong, Huaifang Lu, Enhong Chen, Chin-Hui Lee","doi":"10.1109/IJCNN.2016.7727253","DOIUrl":null,"url":null,"abstract":"We propose joint modeling strategies leveraging upon large-scale mixed-band training speech for recognition of both narrowband and wideband data based on deep neural networks (DNNs). We utilize conventional down-sampling and up-sampling schemes to go between narrowband and wideband data. We also explore DNN-based speech bandwidth expansion (BWE) to map some acoustic features from narrowband to wideband speech. By arranging narrowband and wideband features at the input or the output level of BWE-DNN, and combining down-sampling and up-sampling data, different DNNs can be established. Our experiments on a Mandarin speech recognition task show that the hybrid DNNs for joint modeling of mixed-band speech yield significant performance gains over both the narrowband and wideband speech models, well-trained separately, with a relative character error rate reduction of 7.9% and 3.9% on narrowband and wideband data, respectively. Furthermore, the proposed strategies also consistently outperform other conventional DNN-based methods.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"2018 35","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
We propose joint modeling strategies leveraging upon large-scale mixed-band training speech for recognition of both narrowband and wideband data based on deep neural networks (DNNs). We utilize conventional down-sampling and up-sampling schemes to go between narrowband and wideband data. We also explore DNN-based speech bandwidth expansion (BWE) to map some acoustic features from narrowband to wideband speech. By arranging narrowband and wideband features at the input or the output level of BWE-DNN, and combining down-sampling and up-sampling data, different DNNs can be established. Our experiments on a Mandarin speech recognition task show that the hybrid DNNs for joint modeling of mixed-band speech yield significant performance gains over both the narrowband and wideband speech models, well-trained separately, with a relative character error rate reduction of 7.9% and 3.9% on narrowband and wideband data, respectively. Furthermore, the proposed strategies also consistently outperform other conventional DNN-based methods.