Predicting Effectiveness of Automatic Testing Tools

Brett Daniel, Marat Boshernitsan
{"title":"Predicting Effectiveness of Automatic Testing Tools","authors":"Brett Daniel, Marat Boshernitsan","doi":"10.1109/ASE.2008.49","DOIUrl":null,"url":null,"abstract":"Automatic white-box test generation is a challenging problem. Many existing tools rely on complex code analyses and heuristics. As a result, structural features of an input program may impact tool effectiveness in ways that tool users and designers may not expect or understand. We develop a technique that uses structural program metrics to predict the test coverage achieved by three automatic test generation tools. We use coverage and structural metrics extracted from 11 software projects to train several decision tree classifiers. Our experiments show that these classifiers can predict high or low coverage with success rates of 82% to 94%.","PeriodicalId":184403,"journal":{"name":"2008 23rd IEEE/ACM International Conference on Automated Software Engineering","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 23rd IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2008.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Automatic white-box test generation is a challenging problem. Many existing tools rely on complex code analyses and heuristics. As a result, structural features of an input program may impact tool effectiveness in ways that tool users and designers may not expect or understand. We develop a technique that uses structural program metrics to predict the test coverage achieved by three automatic test generation tools. We use coverage and structural metrics extracted from 11 software projects to train several decision tree classifiers. Our experiments show that these classifiers can predict high or low coverage with success rates of 82% to 94%.
预测自动测试工具的有效性
自动生成白盒测试是一个具有挑战性的问题。许多现有的工具依赖于复杂的代码分析和启发式。因此,输入程序的结构特征可能会以工具用户和设计者无法预料或理解的方式影响工具的有效性。我们开发了一种技术,使用结构程序度量来预测由三个自动测试生成工具实现的测试覆盖率。我们使用从11个软件项目中提取的覆盖率和结构度量来训练几个决策树分类器。我们的实验表明,这些分类器可以预测高覆盖率或低覆盖率,成功率为82%到94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信