Approximation of diameters: randomization doesn't help

A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits
{"title":"Approximation of diameters: randomization doesn't help","authors":"A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits","doi":"10.1109/SFCS.1998.743451","DOIUrl":null,"url":null,"abstract":"We describe a deterministic polynomial-time algorithm which, for a convex body K in Euclidean n-space, finds upper and lower bounds on K's diameter which differ by a factor of O(/spl radic/n/logn). We show that this is, within a constant factor, the best approximation to the diameter that a polynomial-time algorithm can produce even if randomization is allowed. We also show that the above results hold for other quantities similar to the diameter-namely; inradius, circumradius, width, and maximization of the norm over K. In addition to these results for Euclidean spaces, we give tight results for the error of deterministic polynomial-time approximations of radii and norm-maxima for convex bodies in finite-dimensional l/sub p/ spaces.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"48 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We describe a deterministic polynomial-time algorithm which, for a convex body K in Euclidean n-space, finds upper and lower bounds on K's diameter which differ by a factor of O(/spl radic/n/logn). We show that this is, within a constant factor, the best approximation to the diameter that a polynomial-time algorithm can produce even if randomization is allowed. We also show that the above results hold for other quantities similar to the diameter-namely; inradius, circumradius, width, and maximization of the norm over K. In addition to these results for Euclidean spaces, we give tight results for the error of deterministic polynomial-time approximations of radii and norm-maxima for convex bodies in finite-dimensional l/sub p/ spaces.
直径的近似:随机化没有帮助
我们描述了一种确定性多项式时间算法,对于欧几里得n空间中的凸体K,该算法求出K直径的上界和下界,其差异系数为O(/spl径向/n/logn)。我们表明,即使允许随机化,在一个常数因子内,这是多项式时间算法可以产生的直径的最佳近似值。我们还证明,上述结果适用于与直径相似的其他量,即;除了欧氏空间的这些结果之外,我们还给出了有限维l/ p/空间中凸体的半径和范数最大化的确定性多项式时间近似的误差的严密结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信