Vehicle tracking under occlusion conditions using directional ringlet intensity feature transform

Evan Krieger, P. Sidike, Theus H. Aspiras, V. Asari
{"title":"Vehicle tracking under occlusion conditions using directional ringlet intensity feature transform","authors":"Evan Krieger, P. Sidike, Theus H. Aspiras, V. Asari","doi":"10.1109/NAECON.2015.7443041","DOIUrl":null,"url":null,"abstract":"The tracking of vehicles in wide area motion imagery (WAMI) can be a challenge due to the full and partial occlusions that can occur. The proposed solution for this challenge is to use the Directional Ringlet Intensity Feature Transform (DRIFT) feature extraction method with a Kalman filter. The proposed solution will utilize the properties of the DRIFT feature to solve the partial occlusion challenges. The Kalman filter will be used to estimate the object location during a full occlusion. The proposed solution will be tested on several vehicle sequences from the Columbus Large Image Format (CLIF) dataset.","PeriodicalId":133804,"journal":{"name":"2015 National Aerospace and Electronics Conference (NAECON)","volume":"11 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2015.7443041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The tracking of vehicles in wide area motion imagery (WAMI) can be a challenge due to the full and partial occlusions that can occur. The proposed solution for this challenge is to use the Directional Ringlet Intensity Feature Transform (DRIFT) feature extraction method with a Kalman filter. The proposed solution will utilize the properties of the DRIFT feature to solve the partial occlusion challenges. The Kalman filter will be used to estimate the object location during a full occlusion. The proposed solution will be tested on several vehicle sequences from the Columbus Large Image Format (CLIF) dataset.
基于定向小波强度特征变换的遮挡条件下车辆跟踪
在广域运动图像(WAMI)中,由于可能发生完全或部分遮挡,车辆的跟踪可能是一个挑战。针对这一挑战,提出了一种基于卡尔曼滤波的定向小波强度特征变换(DRIFT)特征提取方法。该方案将利用漂移特征的特性来解决部分遮挡问题。卡尔曼滤波将用于在完全遮挡期间估计目标位置。提出的解决方案将在哥伦布大图像格式(CLIF)数据集的几个车辆序列上进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信