A K-SAMPLE RANK TEST BASED ON MODIFIED BAUMGARTNER STATISTIC AND ITS POWER COMPARISON

H. Murakami
{"title":"A K-SAMPLE RANK TEST BASED ON MODIFIED BAUMGARTNER STATISTIC AND ITS POWER COMPARISON","authors":"H. Murakami","doi":"10.5183/JJSCS1988.19.1","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to develop a nonparametric k-sample test based on a modified Baumgartner statistic. We define a new modified Baumgartner statistic B* and give some critical values. Then we compare the power of the B* statistic with the t-test, the Wilcoxon test, the Kolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson-Darling test and the original Baumgartner statistic. The B* statistic is more suitable than the Baumgartner statistic for the location parameter when the sample sizes are not equal. Also, the B* statistic has almost the same power as the Wilcoxon test for location parameter. For scale parameter, the power of the B* statistic is more efficient than the Cramer-von Mises test and the Anderson-Darling test when the sizes are equal. The power of the B* statistic is higher than the Kolmogorov-Smirnov test for location and scale parameters. Then the B* statistic is generalized from two-sample to k-sample problems. The Bk* statistic denotes a k-sample statistic based on the B* statistic. We compare the power of the Bk* statistic with the Kruskal-Wallis test, the k-sample Kolmogorov-Smirnov test, the k-sample Cramer-von Mises test, the k-sample Anderson-Darling test and the k-sample Baumgartner statistic. Finally, we investigate the behavior of power about the Bk* statistics by simulation studies. As a result, we obtain that the Bk* statistic is more suitable than the other statistics.","PeriodicalId":338719,"journal":{"name":"Journal of the Japanese Society of Computational Statistics","volume":"2017 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japanese Society of Computational Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5183/JJSCS1988.19.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

The purpose of this paper is to develop a nonparametric k-sample test based on a modified Baumgartner statistic. We define a new modified Baumgartner statistic B* and give some critical values. Then we compare the power of the B* statistic with the t-test, the Wilcoxon test, the Kolmogorov-Smirnov test, the Cramer-von Mises test, the Anderson-Darling test and the original Baumgartner statistic. The B* statistic is more suitable than the Baumgartner statistic for the location parameter when the sample sizes are not equal. Also, the B* statistic has almost the same power as the Wilcoxon test for location parameter. For scale parameter, the power of the B* statistic is more efficient than the Cramer-von Mises test and the Anderson-Darling test when the sizes are equal. The power of the B* statistic is higher than the Kolmogorov-Smirnov test for location and scale parameters. Then the B* statistic is generalized from two-sample to k-sample problems. The Bk* statistic denotes a k-sample statistic based on the B* statistic. We compare the power of the Bk* statistic with the Kruskal-Wallis test, the k-sample Kolmogorov-Smirnov test, the k-sample Cramer-von Mises test, the k-sample Anderson-Darling test and the k-sample Baumgartner statistic. Finally, we investigate the behavior of power about the Bk* statistics by simulation studies. As a result, we obtain that the Bk* statistic is more suitable than the other statistics.
基于修正baumgartner统计量的k样本秩检验及其功效比较
本文的目的是建立一个基于修正鲍姆加特纳统计量的非参数k样本检验。我们定义了一个新的修正Baumgartner统计量B*,并给出了一些临界值。然后,我们比较了B*统计量与t检验、Wilcoxon检验、Kolmogorov-Smirnov检验、Cramer-von Mises检验、Anderson-Darling检验和原始Baumgartner统计量的能力。当样本量不相等时,B*统计量比Baumgartner统计量更适合于位置参数。此外,B*统计量与位置参数的Wilcoxon检验具有几乎相同的功效。对于规模参数,当规模相等时,B*统计量的幂次比Cramer-von Mises检验和Anderson-Darling检验更有效。对于位置和规模参数,B*统计量的有效性高于Kolmogorov-Smirnov检验。然后将B*统计量从两样本推广到k样本问题。Bk*统计量表示基于B*统计量的k-样本统计量。我们比较了Bk*统计量与Kruskal-Wallis检验、k-样本Kolmogorov-Smirnov检验、k-样本Cramer-von Mises检验、k-样本Anderson-Darling检验和k-样本Baumgartner统计量的有效性。最后,我们通过仿真研究了Bk*统计量的功率行为。结果表明,Bk*统计量比其他统计量更合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信