Signal-to-noise ratio estimation technique for SEM image using linear regression

Z. X. Yeap, K. Sim, C. Tso
{"title":"Signal-to-noise ratio estimation technique for SEM image using linear regression","authors":"Z. X. Yeap, K. Sim, C. Tso","doi":"10.1109/ICORAS.2016.7872602","DOIUrl":null,"url":null,"abstract":"This paper proposes a new signal-to-noise ratio (SNR) estimation technique on scanning electron microscope (SEM) image, using linear regression. The method is based on the single image approach. Four good quality images are used to compare the proposed method and the existing methods: nearest neighborhood, first order interpolation and piecewise cubic Hermite interpolation. The results are compared in terms of estimation peaks, SNR and SNR in dB. In this paper four random selected images are used to present the performance of the proposed method. The method gives better estimation compared to existing methods. Statistical test shows that the estimation results are similar to the original.","PeriodicalId":393534,"journal":{"name":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","volume":"8 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Robotics, Automation and Sciences (ICORAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORAS.2016.7872602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a new signal-to-noise ratio (SNR) estimation technique on scanning electron microscope (SEM) image, using linear regression. The method is based on the single image approach. Four good quality images are used to compare the proposed method and the existing methods: nearest neighborhood, first order interpolation and piecewise cubic Hermite interpolation. The results are compared in terms of estimation peaks, SNR and SNR in dB. In this paper four random selected images are used to present the performance of the proposed method. The method gives better estimation compared to existing methods. Statistical test shows that the estimation results are similar to the original.
基于线性回归的扫描电镜图像信噪比估计技术
提出了一种基于线性回归的扫描电镜图像信噪比估计方法。该方法基于单图像方法。用四幅高质量图像与现有的最近邻插值法、一阶插值法和分段三次埃尔米特插值法进行比较。在估计峰值、信噪比和信噪比(dB)方面对结果进行了比较。本文用随机选择的四幅图像来展示该方法的性能。与现有方法相比,该方法具有更好的估计效果。统计检验表明,估计结果与原模型相近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信