Dataset Analysis and Augmentation for Emoji-Sensitive Irony Detection

Shirley Anugrah Hayati, Aditi Chaudhary, Naoki Otani, A. Black
{"title":"Dataset Analysis and Augmentation for Emoji-Sensitive Irony Detection","authors":"Shirley Anugrah Hayati, Aditi Chaudhary, Naoki Otani, A. Black","doi":"10.18653/v1/d19-5527","DOIUrl":null,"url":null,"abstract":"Irony detection is an important task with applications in identification of online abuse and harassment. With the ubiquitous use of non-verbal cues such as emojis in social media, in this work we aim to study the role of these structures in irony detection. Since the existing irony detection datasets have <10% ironic tweets with emoji, classifiers trained on them are insensitive to emojis. We propose an automated pipeline for creating a more balanced dataset.","PeriodicalId":414714,"journal":{"name":"Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)","volume":"7 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/d19-5527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Irony detection is an important task with applications in identification of online abuse and harassment. With the ubiquitous use of non-verbal cues such as emojis in social media, in this work we aim to study the role of these structures in irony detection. Since the existing irony detection datasets have <10% ironic tweets with emoji, classifiers trained on them are insensitive to emojis. We propose an automated pipeline for creating a more balanced dataset.
表情符号敏感反语检测的数据集分析与增强
反语检测是一项重要的任务,在识别网络滥用和骚扰方面有着广泛的应用。随着社交媒体中表情符号等非语言线索的普遍使用,本研究旨在研究这些结构在反语检测中的作用。由于现有的反讽检测数据集含有表情符号的反讽推文不到10%,因此在这些数据集上训练的分类器对表情符号不敏感。我们提出了一个自动化的管道来创建一个更平衡的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信