Mawdoo3 AI at MADAR Shared Task: Arabic Tweet Dialect Identification

Bashar Talafha, Wael Farhan, Ahmed Altakrouri, Hussein T. Al-Natsheh
{"title":"Mawdoo3 AI at MADAR Shared Task: Arabic Tweet Dialect Identification","authors":"Bashar Talafha, Wael Farhan, Ahmed Altakrouri, Hussein T. Al-Natsheh","doi":"10.18653/v1/W19-4629","DOIUrl":null,"url":null,"abstract":"Arabic dialect identification is an inherently complex problem, as Arabic dialect taxonomy is convoluted and aims to dissect a continuous space rather than a discrete one. In this work, we present machine and deep learning approaches to predict 21 fine-grained dialects form a set of given tweets per user. We adopted numerous feature extraction methods most of which showed improvement in the final model, such as word embedding, Tf-idf, and other tweet features. Our results show that a simple LinearSVC can outperform any complex deep learning model given a set of curated features. With a relatively complex user voting mechanism, we were able to achieve a Macro-Averaged F1-score of 71.84% on MADAR shared subtask-2. Our best submitted model ranked second out of all participating teams.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Arabic dialect identification is an inherently complex problem, as Arabic dialect taxonomy is convoluted and aims to dissect a continuous space rather than a discrete one. In this work, we present machine and deep learning approaches to predict 21 fine-grained dialects form a set of given tweets per user. We adopted numerous feature extraction methods most of which showed improvement in the final model, such as word embedding, Tf-idf, and other tweet features. Our results show that a simple LinearSVC can outperform any complex deep learning model given a set of curated features. With a relatively complex user voting mechanism, we were able to achieve a Macro-Averaged F1-score of 71.84% on MADAR shared subtask-2. Our best submitted model ranked second out of all participating teams.
Mawdoo3 AI在MADAR共享任务:阿拉伯语推特方言识别
阿拉伯语方言识别本身就是一个复杂的问题,因为阿拉伯语方言分类是复杂的,目的是剖析一个连续的空间,而不是一个离散的空间。在这项工作中,我们提出了机器和深度学习方法来预测21种细粒度方言,这些方言形成一组给定的每个用户的推文。我们采用了许多特征提取方法,其中大多数方法在最终模型中都有改进,例如word embedding, Tf-idf,以及其他tweet特征。我们的研究结果表明,一个简单的线性svc可以在给定一组精选特征的情况下胜过任何复杂的深度学习模型。使用相对复杂的用户投票机制,我们能够在MADAR共享子任务-2上实现71.84%的宏观平均f1得分。我们提交的最佳模型在所有参赛团队中排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信