Facial Expression Recognition with Gender Identification

Aarushi Dhawan, Arpita Gupta, A. Dubey
{"title":"Facial Expression Recognition with Gender Identification","authors":"Aarushi Dhawan, Arpita Gupta, A. Dubey","doi":"10.54216/fpa.020203","DOIUrl":null,"url":null,"abstract":"The human facial emotions recognition has attracted interest in the field of Artificial Intelligence. The emotions on a human face depicts what’s going on inside the mind. Facial expression recognition is the part of Facial recognition which is gaining more importance and need for it increases tremendously. Though there are methods to identify expressions using machine learning and Artificial Intelligence techniques, this work attempts to use convolution neural networks to recognize expressions and classify the expressions into 6 emotions categories. Various datasets are investigated and explored for training expression recognition models are explained in this paper and the models which are used in this paper are VGG 19 and RESSNET 18. We included facial emotional recognition with gender identification also. In this project we have used fer2013 and ck+ dataset and ultimately achieved 73% and 94% around accuracies respectively.","PeriodicalId":269527,"journal":{"name":"Fusion: Practice and Applications","volume":"71 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion: Practice and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/fpa.020203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human facial emotions recognition has attracted interest in the field of Artificial Intelligence. The emotions on a human face depicts what’s going on inside the mind. Facial expression recognition is the part of Facial recognition which is gaining more importance and need for it increases tremendously. Though there are methods to identify expressions using machine learning and Artificial Intelligence techniques, this work attempts to use convolution neural networks to recognize expressions and classify the expressions into 6 emotions categories. Various datasets are investigated and explored for training expression recognition models are explained in this paper and the models which are used in this paper are VGG 19 and RESSNET 18. We included facial emotional recognition with gender identification also. In this project we have used fer2013 and ck+ dataset and ultimately achieved 73% and 94% around accuracies respectively.
基于性别认同的面部表情识别
人类面部表情识别已成为人工智能领域的研究热点。人脸上的情绪反映了他们内心的想法。面部表情识别是人脸识别的重要组成部分,对其的需求日益增加。虽然有使用机器学习和人工智能技术来识别表情的方法,但这项工作试图使用卷积神经网络来识别表情,并将表情分为6种情绪类别。本文对各种数据集进行了研究和探索,用于训练表情识别模型,本文使用的模型是VGG 19和RESSNET 18。我们将面部情绪识别与性别识别也包括在内。在这个项目中,我们使用了fer2013和ck+数据集,最终分别达到了73%和94%左右的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信