Reevaluating Synthesizing Sentiment Analysis on COVID-19 Fake News Detection using Spark Dataframe

Syafrial Fachri Pane, Rayhan Prastya, Aji Gautama Putrada, Nur Alamsyah, Mohamad Nurkamal Fauzan
{"title":"Reevaluating Synthesizing Sentiment Analysis on COVID-19 Fake News Detection using Spark Dataframe","authors":"Syafrial Fachri Pane, Rayhan Prastya, Aji Gautama Putrada, Nur Alamsyah, Mohamad Nurkamal Fauzan","doi":"10.1109/ICITSI56531.2022.9970773","DOIUrl":null,"url":null,"abstract":"Some research uses the random forest model and sentiment analysis to detect COVID-19 fake news. However, there is still a research opportunity to apply the method to Indonesian Tweets and reevaluate the feature's performance. Our research aims to reevaluate synthesizing the sentiment analysis feature on detecting COVID-19 fake news on Indonesian Tweets by using the Spark Dataframe. We divide the stages of machine learning development into several steps, including collecting data using Tweepy and then applying sentiment polarity scores using Apache Spark. We apply random forest to classify fake news using the Spark MLlib. Further, we use model evaluation calculation through the level of Accuracy, Recall, Precision, and F1. The results show that applying the sentiment polarity calculation to our Tweet dataset labels 148 Tweets with positive sentiments, 118 Tweets with negative sentiments, and 99 Tweets with neutral sentiments. The Pearson correlation coefficient (PCC) feature score of Sentiment equals 0.056 and ranks fifth in the top feature correlation scores list. According to the experimental findings, the random forest model produces Accuracy = 0.787 for both models with sentiment analysis and without sentiment analysis. Which indicates that sentiment analysis provides no significance in the prediction model.","PeriodicalId":439918,"journal":{"name":"2022 International Conference on Information Technology Systems and Innovation (ICITSI)","volume":"46 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Technology Systems and Innovation (ICITSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITSI56531.2022.9970773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Some research uses the random forest model and sentiment analysis to detect COVID-19 fake news. However, there is still a research opportunity to apply the method to Indonesian Tweets and reevaluate the feature's performance. Our research aims to reevaluate synthesizing the sentiment analysis feature on detecting COVID-19 fake news on Indonesian Tweets by using the Spark Dataframe. We divide the stages of machine learning development into several steps, including collecting data using Tweepy and then applying sentiment polarity scores using Apache Spark. We apply random forest to classify fake news using the Spark MLlib. Further, we use model evaluation calculation through the level of Accuracy, Recall, Precision, and F1. The results show that applying the sentiment polarity calculation to our Tweet dataset labels 148 Tweets with positive sentiments, 118 Tweets with negative sentiments, and 99 Tweets with neutral sentiments. The Pearson correlation coefficient (PCC) feature score of Sentiment equals 0.056 and ranks fifth in the top feature correlation scores list. According to the experimental findings, the random forest model produces Accuracy = 0.787 for both models with sentiment analysis and without sentiment analysis. Which indicates that sentiment analysis provides no significance in the prediction model.
基于Spark数据框架的新型冠状病毒假新闻检测综合情感分析再评价
一些研究使用随机森林模型和情感分析来检测COVID-19假新闻。然而,将该方法应用于印度尼西亚Tweets并重新评估该特征的性能仍有研究机会。我们的研究旨在利用Spark Dataframe对印尼推特上检测COVID-19假新闻的情感分析功能进行重新评估。我们将机器学习的发展阶段分为几个步骤,包括使用Tweepy收集数据,然后使用Apache Spark应用情感极性评分。我们使用Spark MLlib应用随机森林对假新闻进行分类。此外,我们通过准确性、召回率、精度和F1级别使用模型评估计算。结果表明,将情绪极性计算应用于我们的Tweet数据集,标记了148条Tweet具有积极情绪,118条Tweet具有消极情绪,99条Tweet具有中性情绪。Sentiment的Pearson correlation coefficient (PCC) feature score = 0.056,在top feature correlation scores列表中排名第五。根据实验结果,随机森林模型对于有情感分析和没有情感分析的模型都产生了精度= 0.787。这表明情感分析在预测模型中没有意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信