A real-time LIDAR and vision based pedestrian detection system for unmanned ground vehicles

Xiaofeng Han, Jianfeng Lu, Ying Tai, Chunxia Zhao
{"title":"A real-time LIDAR and vision based pedestrian detection system for unmanned ground vehicles","authors":"Xiaofeng Han, Jianfeng Lu, Ying Tai, Chunxia Zhao","doi":"10.1109/ACPR.2015.7486580","DOIUrl":null,"url":null,"abstract":"In this work, we present a real-time pedestrian detection system using LIDAR and Vision in-vehicle. We get regions of interest by clustering lidar point clouds and project them onto the images. After that we use black mask to replace those image areas which has no lidar points projected onto. Then we extract HOG and lidar point clouds features and use those features to detect pedestrians by a linear SVM classifier. The main contributions are that we proposed a method that can select ROIs on image automatically and then enhanced the HOG descriptor with the lidar points' projections. Finally we fuse HOG and lidar based features to train a linear SVM to detect pedestrian. The above method we proposed can satisfy real-time requirement. We apply our pedestrian detection system to our own dataset and KITTI dataset, and show that we outperform the primitive HOG based methods.","PeriodicalId":240902,"journal":{"name":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"15 3‐6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2015.7486580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this work, we present a real-time pedestrian detection system using LIDAR and Vision in-vehicle. We get regions of interest by clustering lidar point clouds and project them onto the images. After that we use black mask to replace those image areas which has no lidar points projected onto. Then we extract HOG and lidar point clouds features and use those features to detect pedestrians by a linear SVM classifier. The main contributions are that we proposed a method that can select ROIs on image automatically and then enhanced the HOG descriptor with the lidar points' projections. Finally we fuse HOG and lidar based features to train a linear SVM to detect pedestrian. The above method we proposed can satisfy real-time requirement. We apply our pedestrian detection system to our own dataset and KITTI dataset, and show that we outperform the primitive HOG based methods.
一种用于无人地面车辆的实时激光雷达和基于视觉的行人检测系统
在这项工作中,我们提出了一种使用激光雷达和视觉的车载实时行人检测系统。我们通过聚集激光雷达点云得到感兴趣的区域,并将它们投射到图像上。之后,我们使用黑色遮罩来替换那些没有激光雷达点投影到的图像区域。然后提取HOG和lidar点云特征,并利用这些特征通过线性SVM分类器检测行人。主要贡献是提出了一种自动选择图像上roi的方法,然后利用激光雷达点的投影增强HOG描述符。最后,我们融合HOG和基于激光雷达的特征来训练线性支持向量机来检测行人。所提出的方法可以满足实时性的要求。我们将我们的行人检测系统应用于我们自己的数据集和KITTI数据集,并表明我们优于原始的基于HOG的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信