Boundaries of relative factor graphs and subgroup classification for automorphisms of free products

Vincent Guirardel, Camille Horbez
{"title":"Boundaries of relative factor graphs and subgroup classification for automorphisms of free products","authors":"Vincent Guirardel, Camille Horbez","doi":"10.2140/gt.2022.26.71","DOIUrl":null,"url":null,"abstract":"Given a group $G$ splitting as a free product $G=G_1\\ast\\dots\\ast G_k\\ast F_N$, we establish classification results for subgroups of the group $Out(G,\\mathcal{F})$ of all automorphisms of $G$ that preserve the conjugacy classes of each $G_i$. We show that every finitely generated subgroup $H\\subseteq Out(G,\\mathcal{F})$ either contains a relatively fully irreducible automorphism, or else it virtually preserves the conjugacy class of a proper free factor relative to the decomposition (the finite generation hypothesis on $H$ can be dropped for $G=F_N$, or more generally when $G$ is toral relatively hyperbolic). In the first case, either $H$ virtually preserves a nonperipheral conjugacy class in $G$, or else $H$ contains an atoroidal automorphism. The key geometric tool to obtain these classification results is a description of the Gromov boundaries of relative versions of the free factor graph $\\mathrm{FF}$ and the $\\mathcal{Z}$-factor graph $\\mathcal{Z}\\mathrm{F}$, as spaces of equivalence classes of arational trees (respectively relatively free arational trees). We also identify the loxodromic isometries of $\\mathrm{FF}$ with the fully irreducible elements of $Out(G,\\mathcal{F})$, and loxodromic isometries of $\\mathcal{Z}\\mathrm{F}$ with the fully irreducible atoroidal outer automorphisms.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"27 44","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Given a group $G$ splitting as a free product $G=G_1\ast\dots\ast G_k\ast F_N$, we establish classification results for subgroups of the group $Out(G,\mathcal{F})$ of all automorphisms of $G$ that preserve the conjugacy classes of each $G_i$. We show that every finitely generated subgroup $H\subseteq Out(G,\mathcal{F})$ either contains a relatively fully irreducible automorphism, or else it virtually preserves the conjugacy class of a proper free factor relative to the decomposition (the finite generation hypothesis on $H$ can be dropped for $G=F_N$, or more generally when $G$ is toral relatively hyperbolic). In the first case, either $H$ virtually preserves a nonperipheral conjugacy class in $G$, or else $H$ contains an atoroidal automorphism. The key geometric tool to obtain these classification results is a description of the Gromov boundaries of relative versions of the free factor graph $\mathrm{FF}$ and the $\mathcal{Z}$-factor graph $\mathcal{Z}\mathrm{F}$, as spaces of equivalence classes of arational trees (respectively relatively free arational trees). We also identify the loxodromic isometries of $\mathrm{FF}$ with the fully irreducible elements of $Out(G,\mathcal{F})$, and loxodromic isometries of $\mathcal{Z}\mathrm{F}$ with the fully irreducible atoroidal outer automorphisms.
自由积自同构的相对因子图边界与子群分类
给定群$G$分裂为自由积$G=G_1\ast\dots\ast G_k\ast F_N$,我们建立了群$G$的所有自同构$Out(G,\mathcal{F})$的子群的分类结果,这些子群保留了每个$G_i$的共轭类。我们证明了每个有限生成子群$H\subseteq Out(G,\mathcal{F})$要么包含一个相对完全不可约的自同构,要么它实际上保留了一个相对于分解的适当自由因子的共轭类($H$上的有限生成假设可以在$G=F_N$时被丢弃,或者更一般地,当$G$是全部相对双曲时)。在第一种情况下,要么$H$实际上保留了$G$中的一个非外周共轭类,要么$H$包含一个向心自同构。获得这些分类结果的关键几何工具是将自由因子图$\ mathm {FF}$和$\mathcal{Z}$-因子图$\mathcal{Z}\ mathm {F}$的相对版本的Gromov边界描述为国家树(分别为相对自由国家树)等价类的空间。我们还确定了$\ mathm {FF}$与$Out(G,\mathcal{F})$的完全不可约元的等值线,以及$\mathcal{Z}\ mathm {F}$的完全不可约外自同构的等值线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信