Stochastic Optimal Control of Dynamic Queue Systems: A Probabilistic Perspective

Yulong Gao, Shuang Wu, K. Johansson, Ling Shi, Lihua Xie
{"title":"Stochastic Optimal Control of Dynamic Queue Systems: A Probabilistic Perspective","authors":"Yulong Gao, Shuang Wu, K. Johansson, Ling Shi, Lihua Xie","doi":"10.1109/ICARCV.2018.8581152","DOIUrl":null,"url":null,"abstract":"Queue overflow of a dynamic queue system gives rise to the information loss (or packet loss) in the communication buffer or the decrease of throughput in the transportation network. This paper investigates a stochastic optimal control problem for dynamic queue systems when imposing probability constraints on queue overflows. We reformulate this problem as a Markov decision process (MDP) with safety constraints. We prove that both finite-horizon and infinite-horizon stochastic optimal control for MDP with such constraints can be transformed as a linear program (LP), respectively. Feasibility conditions are provided for the finite-horizon constrained control problem. Two implementation algorithms are designed under the assumption that only the state (not the state distribution) can be observed at each time instant. Simulation results compare optimal cost and state distribution among different scenarios, and show the probability constraint satisfaction by the proposed algorithms.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":" 38","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Queue overflow of a dynamic queue system gives rise to the information loss (or packet loss) in the communication buffer or the decrease of throughput in the transportation network. This paper investigates a stochastic optimal control problem for dynamic queue systems when imposing probability constraints on queue overflows. We reformulate this problem as a Markov decision process (MDP) with safety constraints. We prove that both finite-horizon and infinite-horizon stochastic optimal control for MDP with such constraints can be transformed as a linear program (LP), respectively. Feasibility conditions are provided for the finite-horizon constrained control problem. Two implementation algorithms are designed under the assumption that only the state (not the state distribution) can be observed at each time instant. Simulation results compare optimal cost and state distribution among different scenarios, and show the probability constraint satisfaction by the proposed algorithms.
动态队列系统的随机最优控制:一个概率的视角
动态队列系统的队列溢出会导致通信缓冲区中的信息丢失(或数据包丢失)或传输网络的吞吐量下降。研究了动态队列系统在对队列溢出施加概率约束时的随机最优控制问题。我们将这个问题重新表述为具有安全约束的马尔可夫决策过程。证明了具有这类约束的MDP的有限地平线和无限地平线随机最优控制可以分别转化为线性规划(LP)。给出了有限视界约束控制问题的可行性条件。在每个时刻只能观察状态(而不能观察状态分布)的假设下,设计了两种实现算法。仿真结果比较了不同场景下的最优成本和状态分布,并验证了算法满足概率约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信