A robust second order numerical method for a weakly coupled system of singularly perturbed reaction-diffusion problem with discontinuous source term

P. M. Basha, V. Shanthi
{"title":"A robust second order numerical method for a weakly coupled system of singularly perturbed reaction-diffusion problem with discontinuous source term","authors":"P. M. Basha, V. Shanthi","doi":"10.1504/ijcsm.2020.105449","DOIUrl":null,"url":null,"abstract":"In this paper, a fitted mesh numerical method on Shishkin mesh is proposed to solve a weakly coupled system of two singularly perturbed reaction-diffusion equations containing equal diffusion parameters with discontinuous source terms. This method uses the standard centred finite difference scheme constructed on piecewise-uniform Shishkin mesh with the average of the source terms on either side of the point of discontinuity and then the problem is solved by an iterative procedure. An error analysis is carried out and the method ensures that the parameter-uniform convergence of almost the second order. Numerical results are provided to confirm the theoretical results and compares well with the existing results.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":" 25","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.105449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a fitted mesh numerical method on Shishkin mesh is proposed to solve a weakly coupled system of two singularly perturbed reaction-diffusion equations containing equal diffusion parameters with discontinuous source terms. This method uses the standard centred finite difference scheme constructed on piecewise-uniform Shishkin mesh with the average of the source terms on either side of the point of discontinuity and then the problem is solved by an iterative procedure. An error analysis is carried out and the method ensures that the parameter-uniform convergence of almost the second order. Numerical results are provided to confirm the theoretical results and compares well with the existing results.
源项不连续的弱耦合奇摄动反应扩散问题的二阶鲁棒数值解法
本文提出了一种基于Shishkin网格的拟合网格数值方法,用于求解具有不连续源项的含等扩散参数的两个奇摄动反应扩散方程弱耦合系统。该方法采用在分段均匀希什金网格上构造的标准中心有限差分格式,源项在不连续点两侧取平均值,然后通过迭代过程求解问题。对该方法进行了误差分析,保证了该方法的参数一致收敛几乎是二阶的。数值结果证实了理论结果,并与已有结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信