Medical X-Rays Categorization and Irregularity Recognition of Bone and Diagnosis of Bone disorders Based on Xception Model

D. Shubhangi, Baswaraj Gadgay, Mohammedi, M. A. Waheed
{"title":"Medical X-Rays Categorization and Irregularity Recognition of Bone and Diagnosis of Bone disorders Based on Xception Model","authors":"D. Shubhangi, Baswaraj Gadgay, Mohammedi, M. A. Waheed","doi":"10.1109/ICETEMS56252.2022.10093474","DOIUrl":null,"url":null,"abstract":"This study adopted a hybrid classification method for determining bone kinds and identifying bone deformities. The proposed methodology perceives the shoulder bones, forearm, humerus, elbow, hand, finger, leg, wrist,and knee. For this study, the Xception pre-trained model is used. The single-view and multi-view techniques are the two techniques used during the testing phase. The improved images send to first stage, which classifies them into the one of nine categories: shoulder, humerus, forearm, elbow, wrist, hand, finger, leg,and knee. Following categorization, the bones are input to second stage, that determines whether bones are normal or pathological. The MURA dataset is used for the experiments. Furthermore, the SVM layer or the classifier replaces the final layer of the used model. The results show that the SVM layer is superior. The study suggests the detection of normal and abnormal bone xrays. Determining whether the bone is normal or abnormal. If abnormal, include symptoms, diagnosis, and home remedies.","PeriodicalId":170905,"journal":{"name":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","volume":" 31","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Emerging Trends in Engineering and Medical Sciences (ICETEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETEMS56252.2022.10093474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study adopted a hybrid classification method for determining bone kinds and identifying bone deformities. The proposed methodology perceives the shoulder bones, forearm, humerus, elbow, hand, finger, leg, wrist,and knee. For this study, the Xception pre-trained model is used. The single-view and multi-view techniques are the two techniques used during the testing phase. The improved images send to first stage, which classifies them into the one of nine categories: shoulder, humerus, forearm, elbow, wrist, hand, finger, leg,and knee. Following categorization, the bones are input to second stage, that determines whether bones are normal or pathological. The MURA dataset is used for the experiments. Furthermore, the SVM layer or the classifier replaces the final layer of the used model. The results show that the SVM layer is superior. The study suggests the detection of normal and abnormal bone xrays. Determining whether the bone is normal or abnormal. If abnormal, include symptoms, diagnosis, and home remedies.
基于异常模型的医用x射线分类、骨异常识别及骨疾病诊断
本研究采用混合分类方法确定骨种类和鉴定骨畸形。提出的方法感知肩骨、前臂、肱骨、肘部、手、手指、腿、手腕和膝盖。本研究采用Xception预训练模型。单视图和多视图技术是测试阶段使用的两种技术。改进后的图像发送到第一阶段,该阶段将它们分为九类:肩膀、肱骨、前臂、肘部、手腕、手、手指、腿和膝盖。在分类之后,骨骼进入第二阶段,确定骨骼是正常的还是病态的。实验采用MURA数据集。此外,支持向量机层或分类器取代了所用模型的最后一层。结果表明,支持向量机层具有较好的性能。该研究建议检测正常和异常的骨x射线。确定骨骼是正常还是不正常。如果不正常,包括症状、诊断和家庭补救措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信