DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis

S. Hertling, Heiko Paulheim
{"title":"DBkWik: A Consolidated Knowledge Graph from Thousands of Wikis","authors":"S. Hertling, Heiko Paulheim","doi":"10.1109/ICBK.2018.00011","DOIUrl":null,"url":null,"abstract":"Popular knowledge graphs such as DBpedia and YAGO are built from Wikipedia, and therefore similar in coverage. In contrast, Wikifarms like Fandom contain Wikis for specific topics, which are often complementary to the information contained in Wikipedia, and thus DBpedia and YAGO. Extracting these Wikis with the DBpedia extraction framework is possible, but results in many isolated knowledge graphs. In this paper, we show how to create one consolidated knowledge graph, called DBkWik, from thousands of Wikis. We perform entity resolution and schema matching, and show that the resulting large-scale knowledge graph is complementary to DBpedia.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"17 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Popular knowledge graphs such as DBpedia and YAGO are built from Wikipedia, and therefore similar in coverage. In contrast, Wikifarms like Fandom contain Wikis for specific topics, which are often complementary to the information contained in Wikipedia, and thus DBpedia and YAGO. Extracting these Wikis with the DBpedia extraction framework is possible, but results in many isolated knowledge graphs. In this paper, we show how to create one consolidated knowledge graph, called DBkWik, from thousands of Wikis. We perform entity resolution and schema matching, and show that the resulting large-scale knowledge graph is complementary to DBpedia.
DBkWik:来自数千个wiki的整合知识图谱
流行的知识图谱,如DBpedia和YAGO,都是基于Wikipedia构建的,因此在覆盖范围上是相似的。相反,像Fandom这样的Wikifarms包含特定主题的wiki,这些主题通常是对Wikipedia中包含的信息的补充,因此DBpedia和YAGO也是如此。使用DBpedia提取框架提取这些wiki是可能的,但是会产生许多孤立的知识图。在本文中,我们展示了如何从数千个wiki中创建一个称为DBkWik的统一知识图。我们进行了实体解析和模式匹配,并证明了得到的大规模知识图谱与DBpedia是互补的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信