Fairness, accountability, transparency in AI at scale: lessons from national programs

M. Ahmad, A. Teredesai, C. Eckert
{"title":"Fairness, accountability, transparency in AI at scale: lessons from national programs","authors":"M. Ahmad, A. Teredesai, C. Eckert","doi":"10.1145/3351095.3375690","DOIUrl":null,"url":null,"abstract":"The panel aims to elucidate how different national govenmental programs are implementing accountability of machine learning systems in healthcare and how accountability is operationlized in different cultural settings in legislation, policy and deployment. We have representatives from three different govenments, UAE, Singapore and Maldives who will discuss what accountability of AI and machine learning means in their contexts and use cases. We hope to have a fruitful conversation around FAT ML as it is operationalized ccross cultures, national boundries and legislative constraints.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":" 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3375690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The panel aims to elucidate how different national govenmental programs are implementing accountability of machine learning systems in healthcare and how accountability is operationlized in different cultural settings in legislation, policy and deployment. We have representatives from three different govenments, UAE, Singapore and Maldives who will discuss what accountability of AI and machine learning means in their contexts and use cases. We hope to have a fruitful conversation around FAT ML as it is operationalized ccross cultures, national boundries and legislative constraints.
大规模人工智能的公平、问责和透明度:来自国家项目的经验教训
该小组旨在阐明不同的国家政府计划如何在医疗保健中实施机器学习系统的问责制,以及问责制如何在不同的文化背景下在立法、政策和部署中实施。我们有来自三个不同政府的代表,阿联酋、新加坡和马尔代夫,他们将讨论人工智能和机器学习的问责制在他们的背景和用例中意味着什么。我们希望围绕FAT ML进行富有成效的对话,因为它是跨文化、国界和立法限制的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信