Implementation of neural constructivism with programmable hardware

A. Pérez-Uribe, E. Sanchez
{"title":"Implementation of neural constructivism with programmable hardware","authors":"A. Pérez-Uribe, E. Sanchez","doi":"10.1109/ISNFS.1996.603820","DOIUrl":null,"url":null,"abstract":"Most neural network models base their \"learning\" capability on changing the strengths of interconnection between computational elements. However, according to \"neural constructivism\", an environmentally-guided neural circuit building offers powerful learning capabilities while minimizing the need for domain-specific structure prespecification. This paper presents a field programmable hardware implementation of an unsupervised constructive neural network with online size adaptation, a form of neural constructivism, and presents a color learning and recognition application.","PeriodicalId":187481,"journal":{"name":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","volume":" 100","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st International Symposium on Neuro-Fuzzy Systems, AT '96. Conference Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISNFS.1996.603820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Most neural network models base their "learning" capability on changing the strengths of interconnection between computational elements. However, according to "neural constructivism", an environmentally-guided neural circuit building offers powerful learning capabilities while minimizing the need for domain-specific structure prespecification. This paper presents a field programmable hardware implementation of an unsupervised constructive neural network with online size adaptation, a form of neural constructivism, and presents a color learning and recognition application.
用可编程硬件实现神经建构主义
大多数神经网络模型将其“学习”能力建立在改变计算元素之间互连强度的基础上。然而,根据“神经建构主义”,环境引导的神经回路构建提供了强大的学习能力,同时最大限度地减少了对特定领域结构预规范的需求。本文提出了一种具有在线大小自适应的无监督构造神经网络的现场可编程硬件实现,这是神经构造主义的一种形式,并给出了颜色学习和识别的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信