Clustering-Based Spatio-Temporal Analysis of Big Atmospheric Data

A. Cuzzocrea, M. Gaber, Staci Lattimer, G. Grasso
{"title":"Clustering-Based Spatio-Temporal Analysis of Big Atmospheric Data","authors":"A. Cuzzocrea, M. Gaber, Staci Lattimer, G. Grasso","doi":"10.1145/2896387.2900326","DOIUrl":null,"url":null,"abstract":"This paper proposes a comprehensive approach for supporting clustering-based spatio-temporal analysis of big atmospheric data via specializing on the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. In particular, in our research we consider GGEs from three EU countries, namely UK, France and Italy. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts.","PeriodicalId":342210,"journal":{"name":"Proceedings of the International Conference on Internet of things and Cloud Computing","volume":"13 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Internet of things and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2896387.2900326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a comprehensive approach for supporting clustering-based spatio-temporal analysis of big atmospheric data via specializing on the interesting applicative setting represented by Greenhouse Gas Emissions (GGEs), a relevant instance of Big Data that empathize the Variety aspect of the well-known 3V Big Data axioms. In particular, in our research we consider GGEs from three EU countries, namely UK, France and Italy. The deriving Big Data Mining model turns to be useful for decision support processes in both the governmental and industrial contexts.
基于聚类的大气大数据时空分析
本文提出了一种全面的方法,通过专注于以温室气体排放(gge)为代表的有趣的应用设置,支持基于聚类的大大气数据时空分析。温室气体排放(gge)是大数据的一个相关实例,与著名的3V大数据公理的多样性方面有共鸣。特别是,在我们的研究中,我们考虑了来自三个欧盟国家的政府间企业,即英国、法国和意大利。衍生的大数据挖掘模型对政府和工业环境中的决策支持过程都很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信