The research on electromagnetic and thermal issue of the high power density permanent magnet synchronous motor based on thermal conductivity optimization of the armature end
{"title":"The research on electromagnetic and thermal issue of the high power density permanent magnet synchronous motor based on thermal conductivity optimization of the armature end","authors":"L. Li, J. Zhang, C. Zhang, H. Yan","doi":"10.1109/INTMAG.2015.7157593","DOIUrl":null,"url":null,"abstract":"This paper investigates the relationship between the electromagnetic parameters and the extreme input current in a permanent magnet synchronous motor (PMSM). It is found that the direct-axis inductance, DC resistance, and back-EMF for no load conditions have a large influence on the limit of the extreme input current. Hence, the lower back-EMF and smaller direct-axis inductance can help to improve the max output power of PMSM. Finite element analysis is performed for thermal modelling using the ANSYS Workbench and verified by test experiments.","PeriodicalId":381832,"journal":{"name":"2015 IEEE Magnetics Conference (INTERMAG)","volume":"5 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Magnetics Conference (INTERMAG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTMAG.2015.7157593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the relationship between the electromagnetic parameters and the extreme input current in a permanent magnet synchronous motor (PMSM). It is found that the direct-axis inductance, DC resistance, and back-EMF for no load conditions have a large influence on the limit of the extreme input current. Hence, the lower back-EMF and smaller direct-axis inductance can help to improve the max output power of PMSM. Finite element analysis is performed for thermal modelling using the ANSYS Workbench and verified by test experiments.