Identification of Class a Noise Parameters via Least Square Gradient Method

Shu-xia Zhang, Yu-zhong Jiang
{"title":"Identification of Class a Noise Parameters via Least Square Gradient Method","authors":"Shu-xia Zhang, Yu-zhong Jiang","doi":"10.1109/CISP.2009.5300913","DOIUrl":null,"url":null,"abstract":"The Middleton Class A interference model is a statistical-physical and parametric model for man-made and natural electromagnetic (EM) interference. In this paper, the efficient estimation of the Class A model parameters based on least square gradient method is derived. The considered estimator converges fast and low-complexity with performance approaching theoretical optima for large data samples. Simulation of this estimator with three unknown parameters indicates that this technique is efficient. Index Terms—Middleton Class A Model. Impulsive Noise. Parameter Estimation. Non-Gaussian Noise. characteristic function has simple form(12). In this paper we proposed a method for parameter estimation based on the characteristic function spectrum estimation from observation samples. Our method is well suited not only for two-parameter estimation of Class A model like Zabin's work(10), but also for estimation of full three-parameter estimation and adaptive to track changes for channel noise. The later is critical to the implementation of signal detection and estimation algorithms in non-Gaussian noise environment.","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"34 51","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5300913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Middleton Class A interference model is a statistical-physical and parametric model for man-made and natural electromagnetic (EM) interference. In this paper, the efficient estimation of the Class A model parameters based on least square gradient method is derived. The considered estimator converges fast and low-complexity with performance approaching theoretical optima for large data samples. Simulation of this estimator with three unknown parameters indicates that this technique is efficient. Index Terms—Middleton Class A Model. Impulsive Noise. Parameter Estimation. Non-Gaussian Noise. characteristic function has simple form(12). In this paper we proposed a method for parameter estimation based on the characteristic function spectrum estimation from observation samples. Our method is well suited not only for two-parameter estimation of Class A model like Zabin's work(10), but also for estimation of full three-parameter estimation and adaptive to track changes for channel noise. The later is critical to the implementation of signal detection and estimation algorithms in non-Gaussian noise environment.
基于最小二乘梯度法的a类噪声参数辨识
米德尔顿A类干扰模型是人为和自然电磁干扰的统计物理和参数模型。本文提出了基于最小二乘梯度法的A类模型参数的有效估计方法。所考虑的估计器收敛速度快,复杂度低,对于大数据样本的性能接近理论最优。对该估计器进行了三个未知参数的仿真,结果表明该方法是有效的。索引条款-米德尔顿A类模型。脉冲噪声。参数估计。非高斯噪声。特征函数形式简单(12)。本文提出了一种基于观测样本特征函数谱估计的参数估计方法。我们的方法不仅适用于Zabin(10)等A类模型的双参数估计,而且适用于全三参数估计的估计,并自适应信道噪声的跟踪变化。后者对于实现非高斯噪声环境下的信号检测和估计算法至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信