Global asymptotic stability of anti-periodic solution for impulsive Cohen-Grossberg neural networks with multiple delays

Q. Ma, Xinyu Pan, Sitian Qin
{"title":"Global asymptotic stability of anti-periodic solution for impulsive Cohen-Grossberg neural networks with multiple delays","authors":"Q. Ma, Xinyu Pan, Sitian Qin","doi":"10.1109/ICICIP.2016.7885906","DOIUrl":null,"url":null,"abstract":"The global asymptotic stability of anti-periodic solution for Cohen-Grossberg neural networks (CGNNs) is investigated. The CGNNs we consider have impulsive effects and multiple delays. By constructing a suitable Lyapunov function, we prove the existence of the globally asymptotically stable anti-periodic solution for impulsive CGNNs. Several numerical examples are presented to illustrate the validity and improvement of our results.","PeriodicalId":226381,"journal":{"name":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","volume":"3 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2016.7885906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The global asymptotic stability of anti-periodic solution for Cohen-Grossberg neural networks (CGNNs) is investigated. The CGNNs we consider have impulsive effects and multiple delays. By constructing a suitable Lyapunov function, we prove the existence of the globally asymptotically stable anti-periodic solution for impulsive CGNNs. Several numerical examples are presented to illustrate the validity and improvement of our results.
多时滞脉冲Cohen-Grossberg神经网络反周期解的全局渐近稳定性
研究了Cohen-Grossberg神经网络反周期解的全局渐近稳定性。我们考虑的cgnn具有脉冲效应和多重延迟。通过构造一个合适的Lyapunov函数,证明了脉冲型cgnn全局渐近稳定反周期解的存在性。最后给出了几个数值算例,说明了所得结果的有效性和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信