Using WHY-type Question-Answer Pairs to Improve Implicit Causal Relation Recognition

Huibin Ruan, Yu Hong, Yu Sun, Yang Xu, Min Zhang
{"title":"Using WHY-type Question-Answer Pairs to Improve Implicit Causal Relation Recognition","authors":"Huibin Ruan, Yu Hong, Yu Sun, Yang Xu, Min Zhang","doi":"10.1109/IALP48816.2019.9037693","DOIUrl":null,"url":null,"abstract":"Implicit causal relation recognition aims to identify the causal relation between a pair of arguments. It is a challenging task due to the lack of conjunctions and the shortage of labeled data. In order to improve the identification performance, we come up with an approach to expand the training dataset. On the basis of the hypothesis that there inherently exists causal relations in WHY-type Question-Answer (QA) pairs, we utilize WHY-type QA pairs for the training set expansion. In practice, we first collect WHY-type QA pairs from the Knowledge Bases (KBs) of the reading comprehension tasks, and then convert them into narrative argument pairs by Question-Statement Conversion (QSC). In order to alleviate redundancy, we use active learning (AL) to select informative samples from the synthetic argument pairs. The sampled synthetic argument pairs are added to the Penn Discourse Treebank (PDTB), and the expanded PDTB is used to retrain the neural network-based classifiers. Experiments show that our method yields a performance gain of 2.42% F 1-score when AL is used, and 1.61% without using.","PeriodicalId":208066,"journal":{"name":"2019 International Conference on Asian Language Processing (IALP)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP48816.2019.9037693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Implicit causal relation recognition aims to identify the causal relation between a pair of arguments. It is a challenging task due to the lack of conjunctions and the shortage of labeled data. In order to improve the identification performance, we come up with an approach to expand the training dataset. On the basis of the hypothesis that there inherently exists causal relations in WHY-type Question-Answer (QA) pairs, we utilize WHY-type QA pairs for the training set expansion. In practice, we first collect WHY-type QA pairs from the Knowledge Bases (KBs) of the reading comprehension tasks, and then convert them into narrative argument pairs by Question-Statement Conversion (QSC). In order to alleviate redundancy, we use active learning (AL) to select informative samples from the synthetic argument pairs. The sampled synthetic argument pairs are added to the Penn Discourse Treebank (PDTB), and the expanded PDTB is used to retrain the neural network-based classifiers. Experiments show that our method yields a performance gain of 2.42% F 1-score when AL is used, and 1.61% without using.
利用“为什么”型问答对改进内隐因果关系识别
内隐因果关系识别的目的是识别一对论证之间的因果关系。由于缺乏连词和标记数据,这是一项具有挑战性的任务。为了提高识别性能,我们提出了一种扩展训练数据集的方法。基于why型问答对存在内在因果关系的假设,我们利用why型问答对进行训练集扩展。在实践中,我们首先从阅读理解任务的知识库(KBs)中收集WHY-type QA对,然后通过问题-陈述转换(QSC)将其转换为叙事性论点对。为了减少冗余,我们使用主动学习(AL)从合成参数对中选择信息样本。将采样的合成参数对添加到Penn话语树库(PDTB)中,并使用扩展后的PDTB对基于神经网络的分类器进行再训练。实验表明,我们的方法在使用人工智能时的性能增益为2.42%,而在不使用人工智能时的性能增益为1.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信