Panel Vector Autoregression Under Cross-Sectional Dependence

Xiao Huang
{"title":"Panel Vector Autoregression Under Cross-Sectional Dependence","authors":"Xiao Huang","doi":"10.1111/j.1368-423X.2008.00240.x","DOIUrl":null,"url":null,"abstract":"This paper studies estimation in panel vector autoregression (VAR) under cross-sectional dependence. The time series are allowed to be an unknown mixture of stationary and unit root processes with possible cointegrating relations. The cross-sectional dependence is modeled with a factor structure. We extend the factor analysis in Bai and Ng (2002, Econometrica 70, 91--221) to vector processes. The fully modified (FM) estimator in Phillips (1995) is used for estimation in panel VAR and we also propose a factor augmented FM estimator. Our simulation results show this factor augmented FM estimator performs well when sample size is large. Copyright © 2008 The Author. Journal compilation © Royal Economic Society 2008","PeriodicalId":175689,"journal":{"name":"Wiley-Blackwell: Econometrics Journal","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1368-423X.2008.00240.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This paper studies estimation in panel vector autoregression (VAR) under cross-sectional dependence. The time series are allowed to be an unknown mixture of stationary and unit root processes with possible cointegrating relations. The cross-sectional dependence is modeled with a factor structure. We extend the factor analysis in Bai and Ng (2002, Econometrica 70, 91--221) to vector processes. The fully modified (FM) estimator in Phillips (1995) is used for estimation in panel VAR and we also propose a factor augmented FM estimator. Our simulation results show this factor augmented FM estimator performs well when sample size is large. Copyright © 2008 The Author. Journal compilation © Royal Economic Society 2008
横截面相关性下的面板向量自回归
本文研究了截面相关条件下面板向量自回归(VAR)的估计问题。允许时间序列是平稳过程和单位根过程的未知混合物,它们之间可能存在协整关系。采用因子结构对截面相关性进行建模。我们将Bai和Ng (2002, Econometrica 70,91—221)的因子分析扩展到向量过程。将Phillips(1995)的完全修正(FM)估计量用于面板VAR的估计,并提出了一个因子增广的FM估计量。仿真结果表明,该因子增强调频估计器在样本量较大时具有良好的性能。版权所有©2008作者。期刊汇编©皇家经济学会2008
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信