Inverse Operators, q-Fractional Integrals, and q-Bernoulli Polynomials

M. Ismail, Mizan Rahman
{"title":"Inverse Operators, q-Fractional Integrals, and q-Bernoulli Polynomials","authors":"M. Ismail, Mizan Rahman","doi":"10.1006/jath.2001.3644","DOIUrl":null,"url":null,"abstract":"We introduce operators of q-fractional integration through inverses of the Askey-Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q->1 the polynomials become polynomials in x-y, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey-Wilson operator on an L^2 space weighted by the weight function of the Askey-Wilson polynomials.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We introduce operators of q-fractional integration through inverses of the Askey-Wilson operator and use them to introduce a q-fractional calculus. We establish the semigroup property for fractional integrals and fractional derivatives. We study properties of the kernel of q-fractional integral and show how they give rise to a q-analogue of Bernoulli polynomials, which are now polynomials of two variables, x and y. As q->1 the polynomials become polynomials in x-y, a convolution kernel in one variable. We also evaluate explicitly a related kernel of a right inverse of the Askey-Wilson operator on an L^2 space weighted by the weight function of the Askey-Wilson polynomials.
逆算子,q-分数积分,q-伯努利多项式
我们通过Askey-Wilson算子的逆引入q分数阶积分算子,并利用它们引入q分数阶微积分。建立了分数阶积分和分数阶导数的半群性质。我们研究了q分数阶积分核的性质,并展示了它们如何产生伯努利多项式的q模拟,它现在是两个变量x和y的多项式。当q->1时,多项式变成了x-y的多项式,一个单变量的卷积核。我们还显式地求出了由Askey-Wilson多项式的权函数加权的L^2空间上Askey-Wilson算子的右逆的相关核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信