Neural network volatility forecasts

José R. Aragonés, C. Blanco, Pablo García Estévez
{"title":"Neural network volatility forecasts","authors":"José R. Aragonés, C. Blanco, Pablo García Estévez","doi":"10.1002/isaf.288","DOIUrl":null,"url":null,"abstract":"We analyse whether the use of neural networks can improve ‘traditional’ volatility forecasts from time-series models, as well as implied volatilities obtained from options on futures on the Spanish stock market index, the IBEX-35. \n \nOne of our main contributions is to explore the predictive ability of neural networks that incorporate both implied volatility information and historical time-series information. \n \nOur results show that the general regression neural network forecasts improve the information content of implied volatilities and enhance the predictive ability of the models. Our analysis is also consistent with the results from prior research studies showing that implied volatility is an unbiased forecast of future volatility and that time-series models have lower explanatory power than implied volatility. Copyright © 2008 John Wiley & Sons, Ltd.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/isaf.288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We analyse whether the use of neural networks can improve ‘traditional’ volatility forecasts from time-series models, as well as implied volatilities obtained from options on futures on the Spanish stock market index, the IBEX-35. One of our main contributions is to explore the predictive ability of neural networks that incorporate both implied volatility information and historical time-series information. Our results show that the general regression neural network forecasts improve the information content of implied volatilities and enhance the predictive ability of the models. Our analysis is also consistent with the results from prior research studies showing that implied volatility is an unbiased forecast of future volatility and that time-series models have lower explanatory power than implied volatility. Copyright © 2008 John Wiley & Sons, Ltd.
神经网络波动率预测
我们分析了神经网络的使用是否可以改善时间序列模型的“传统”波动率预测,以及从西班牙股票市场指数IBEX-35的期货期权中获得的隐含波动率。我们的主要贡献之一是探索结合隐含波动率信息和历史时间序列信息的神经网络的预测能力。结果表明,广义回归神经网络预测提高了隐含波动率的信息量,增强了模型的预测能力。我们的分析也与先前的研究结果一致,表明隐含波动率是对未来波动率的无偏预测,并且时间序列模型的解释能力低于隐含波动率。版权所有©2008 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信