A Unified Calculus Using the Generalized Bernoulli Polynomials

C. Frappier
{"title":"A Unified Calculus Using the Generalized Bernoulli Polynomials","authors":"C. Frappier","doi":"10.1006/jath.2000.3550","DOIUrl":null,"url":null,"abstract":"We introduce an @a-calculus with the help of the generalized Bernoulli polynomials. The parameter @a is the order of a Bessel function of the first kind. The differential @a-calculus can be put in a general context where the concept of supporting function is an important tool for practical purposes. Our somewhat more restrictive point of view has the advantage of permitting a consistent definition of an @a-integral with several interesting properties. It results in the possibility of expressing a remainder, in the aforementioned context, in a completely new form in our case.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2000.3550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We introduce an @a-calculus with the help of the generalized Bernoulli polynomials. The parameter @a is the order of a Bessel function of the first kind. The differential @a-calculus can be put in a general context where the concept of supporting function is an important tool for practical purposes. Our somewhat more restrictive point of view has the advantage of permitting a consistent definition of an @a-integral with several interesting properties. It results in the possibility of expressing a remainder, in the aforementioned context, in a completely new form in our case.
使用广义伯努利多项式的统一微积分
在广义伯努利多项式的帮助下,引入了@a-微积分。参数@a是第一类贝塞尔函数的阶数。微分@a微积分可以放在一般情况下,其中支持函数的概念是一个重要的实用工具。我们的限制性更强的观点有一个优点,它允许一个具有几个有趣性质的@a积分的一致定义。它导致在前面的上下文中,以一种全新的形式来表示余数的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信