Bayesian Estimation of a Random Effects Heteroscedastic Probit Model

Yuanyuan Gu, D. Fiebig, E. Cripps, R. Kohn
{"title":"Bayesian Estimation of a Random Effects Heteroscedastic Probit Model","authors":"Yuanyuan Gu, D. Fiebig, E. Cripps, R. Kohn","doi":"10.1111/j.1368-423X.2009.00283.x","DOIUrl":null,"url":null,"abstract":"Bayesian analysis is given of a random effects binary probit model that allows for heteroscedasticity. Real and simulated examples illustrate the approach and show that ignoring heteroscedasticity when it exists may lead to biased estimates and poor prediction. The computation is carried out by an efficient Markov chain Monte Carlo sampling scheme that generates the parameters in blocks. We use the Bayes factor, cross-validation of the predictive density, the deviance information criterion and Receiver Operating Characteristic (ROC) curves for model comparison. Copyright © 2009 The Author(s). Journal compilation © Royal Economic Society 2009","PeriodicalId":175689,"journal":{"name":"Wiley-Blackwell: Econometrics Journal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1368-423X.2009.00283.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Bayesian analysis is given of a random effects binary probit model that allows for heteroscedasticity. Real and simulated examples illustrate the approach and show that ignoring heteroscedasticity when it exists may lead to biased estimates and poor prediction. The computation is carried out by an efficient Markov chain Monte Carlo sampling scheme that generates the parameters in blocks. We use the Bayes factor, cross-validation of the predictive density, the deviance information criterion and Receiver Operating Characteristic (ROC) curves for model comparison. Copyright © 2009 The Author(s). Journal compilation © Royal Economic Society 2009
随机效应异方差概率模型的贝叶斯估计
给出了考虑异方差的随机效应二元概率模型的贝叶斯分析。实际和模拟的例子说明了该方法,并表明当异方差存在时忽略它可能导致估计偏差和预测不良。计算是通过一个有效的马尔可夫链蒙特卡罗采样方案进行的,该方案以块为单位生成参数。我们使用贝叶斯因子、预测密度交叉验证、偏差信息准则和接收者工作特征(ROC)曲线进行模型比较。版权所有©2009作者。期刊汇编©皇家经济学会2009
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信