Yuanyuan Gu, D. Fiebig, E. Cripps, R. Kohn
{"title":"Bayesian Estimation of a Random Effects Heteroscedastic Probit Model","authors":"Yuanyuan Gu, D. Fiebig, E. Cripps, R. Kohn","doi":"10.1111/j.1368-423X.2009.00283.x","DOIUrl":null,"url":null,"abstract":"Bayesian analysis is given of a random effects binary probit model that allows for heteroscedasticity. Real and simulated examples illustrate the approach and show that ignoring heteroscedasticity when it exists may lead to biased estimates and poor prediction. The computation is carried out by an efficient Markov chain Monte Carlo sampling scheme that generates the parameters in blocks. We use the Bayes factor, cross-validation of the predictive density, the deviance information criterion and Receiver Operating Characteristic (ROC) curves for model comparison. Copyright © 2009 The Author(s). Journal compilation © Royal Economic Society 2009","PeriodicalId":175689,"journal":{"name":"Wiley-Blackwell: Econometrics Journal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/j.1368-423X.2009.00283.x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
随机效应异方差概率模型的贝叶斯估计
给出了考虑异方差的随机效应二元概率模型的贝叶斯分析。实际和模拟的例子说明了该方法,并表明当异方差存在时忽略它可能导致估计偏差和预测不良。计算是通过一个有效的马尔可夫链蒙特卡罗采样方案进行的,该方案以块为单位生成参数。我们使用贝叶斯因子、预测密度交叉验证、偏差信息准则和接收者工作特征(ROC)曲线进行模型比较。版权所有©2009作者。期刊汇编©皇家经济学会2009
本文章由计算机程序翻译,如有差异,请以英文原文为准。