Xin Chen, Yuan Yuan, Yichi Chen, Jin Yu, Jingzhou Wang, Jianfang Chen, Yanzhi Guo and Xuemei Pu*,
{"title":"Biased Activation Mechanism Induced by GPCR Heterodimerization: Observations from μOR/δOR Dimers","authors":"Xin Chen, Yuan Yuan, Yichi Chen, Jin Yu, Jingzhou Wang, Jianfang Chen, Yanzhi Guo and Xuemei Pu*, ","doi":"10.1021/acs.jcim.2c00962","DOIUrl":null,"url":null,"abstract":"<p >GPCRs regulate multiple intracellular signaling cascades. Biasedly activating one signaling pathway over the others provides additional clinical utility to optimize GPCR-based therapies. GPCR heterodimers possess different functions from their monomeric states, including their selectivity to different transducers. However, the biased signaling mechanism induced by the heterodimerization remains unclear. Motivated by the issue, we select an important GPCR heterodimer (μOR/δOR heterodimer) as a case and use microsecond Gaussian accelerated molecular dynamics simulation coupled with potential of mean force and protein structure network (PSN) to probe mechanisms regarding the heterodimerization-induced constitutive β-arrestin activity and efficacy change of the agonist DAMGO. The results show that only the lowest energy state of the μOR/δOR heterodimer, which adopts a slightly outward shift of TM6 and an ICL2 conformation close to the receptor core, can selectively accommodate β-arrestins. PSN further reveals important roles of H8, ICL1, and ICL2 in regulating the constitutive β-arrestin-biased activity for the apo μOR/δOR heterodimer. In addition, the heterodimerization can allosterically alter the binding mode of DAMGO mainly by means of W7.35. Consequently, DAMGO transmits the structural signal mainly through TM6 and TM7 in the dimer, rather than TM3 similar to the μOR monomer, thus changing the efficacy of DAMGO from a balanced agonist to the β-arrestin-biased one. On the other side, the binding of DAMGO to the heterodimer can stabilize μOR/δOR heterodimers through a stronger interaction of TM1/TM1 and H8/H8, accordingly enhancing the interaction of μOR with δOR and the binding affinity of the dimer to the β-arrestin. The agonist DAMGO does not change main compositions of the regulation network from the dimer interface to the transducer binding pocket of the μOR protomer, but induces an increase in the structural communication of the network, which should contribute to the enhanced β-arrestin coupling. Our observations, for the first time, reveal the molecular mechanism of the biased signaling induced by the heterodimerization for GPCRs, which should be beneficial to more comprehensively understand the GPCR bias signaling.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"62 22","pages":"5581–5600"},"PeriodicalIF":5.3000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.2c00962","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 2
Abstract
GPCRs regulate multiple intracellular signaling cascades. Biasedly activating one signaling pathway over the others provides additional clinical utility to optimize GPCR-based therapies. GPCR heterodimers possess different functions from their monomeric states, including their selectivity to different transducers. However, the biased signaling mechanism induced by the heterodimerization remains unclear. Motivated by the issue, we select an important GPCR heterodimer (μOR/δOR heterodimer) as a case and use microsecond Gaussian accelerated molecular dynamics simulation coupled with potential of mean force and protein structure network (PSN) to probe mechanisms regarding the heterodimerization-induced constitutive β-arrestin activity and efficacy change of the agonist DAMGO. The results show that only the lowest energy state of the μOR/δOR heterodimer, which adopts a slightly outward shift of TM6 and an ICL2 conformation close to the receptor core, can selectively accommodate β-arrestins. PSN further reveals important roles of H8, ICL1, and ICL2 in regulating the constitutive β-arrestin-biased activity for the apo μOR/δOR heterodimer. In addition, the heterodimerization can allosterically alter the binding mode of DAMGO mainly by means of W7.35. Consequently, DAMGO transmits the structural signal mainly through TM6 and TM7 in the dimer, rather than TM3 similar to the μOR monomer, thus changing the efficacy of DAMGO from a balanced agonist to the β-arrestin-biased one. On the other side, the binding of DAMGO to the heterodimer can stabilize μOR/δOR heterodimers through a stronger interaction of TM1/TM1 and H8/H8, accordingly enhancing the interaction of μOR with δOR and the binding affinity of the dimer to the β-arrestin. The agonist DAMGO does not change main compositions of the regulation network from the dimer interface to the transducer binding pocket of the μOR protomer, but induces an increase in the structural communication of the network, which should contribute to the enhanced β-arrestin coupling. Our observations, for the first time, reveal the molecular mechanism of the biased signaling induced by the heterodimerization for GPCRs, which should be beneficial to more comprehensively understand the GPCR bias signaling.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.