Heteroscedasticity�?Robust C Model Averaging

Qingfeng Liu, R. Okui
{"title":"Heteroscedasticity�?Robust C Model Averaging","authors":"Qingfeng Liu, R. Okui","doi":"10.1111/ectj.12009","DOIUrl":null,"url":null,"abstract":"This paper proposes a new model-averaging method, called the Heteroskedasticity-Robust Cp (HRCp) method, for linear regression models with heteroskedastic errors. We provide a feasible form of the Mallows’ Cp-like criterion for choosing the weighting vector for averaging. Under some regularity conditions, we show that the HRCp method has asymptotic optimality. The simulation results show that our method works well and performs better than alternative methods in finite samples when the number of candidate models is large and/or the population coefficient of determination is not small.","PeriodicalId":175689,"journal":{"name":"Wiley-Blackwell: Econometrics Journal","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley-Blackwell: Econometrics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ectj.12009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

This paper proposes a new model-averaging method, called the Heteroskedasticity-Robust Cp (HRCp) method, for linear regression models with heteroskedastic errors. We provide a feasible form of the Mallows’ Cp-like criterion for choosing the weighting vector for averaging. Under some regularity conditions, we show that the HRCp method has asymptotic optimality. The simulation results show that our method works well and performs better than alternative methods in finite samples when the number of candidate models is large and/or the population coefficient of determination is not small.
异方差性�?稳健C模型平均
针对具有异方差误差的线性回归模型,提出了一种新的模型平均方法——异方差-鲁棒Cp (HRCp)方法。我们提供了一种可行的Mallows ' p-like准则,用于选择加权向量进行平均。在一些正则性条件下,我们证明了HRCp方法具有渐近最优性。仿真结果表明,在有限样本条件下,当候选模型数量较大或总体决定系数较大时,该方法的性能优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信