{"title":"Derivatives of Generalized Distance Functions and Existence of Generalized Nearest Points","authors":"Chong Li, R. Ni","doi":"10.1006/jath.2001.3651","DOIUrl":null,"url":null,"abstract":"The relationship between directional derivatives of generalized distance functions and the existence of generalized nearest points in Banach spaces is investigated. Let G be any nonempty closed subset in a compact locally uniformly convex Banach space. It is proved that if the one-sided directional derivative of the generalized distance function associated to G at x equals to 1 or -1, then the generalized nearest points to x from G exist. We also give a partial answer (Theorem 3.5) to the open problem put forward by S. Fitzpatrick (1989, Bull. Austral. Math. Soc.39, 233-238).","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38
Abstract
The relationship between directional derivatives of generalized distance functions and the existence of generalized nearest points in Banach spaces is investigated. Let G be any nonempty closed subset in a compact locally uniformly convex Banach space. It is proved that if the one-sided directional derivative of the generalized distance function associated to G at x equals to 1 or -1, then the generalized nearest points to x from G exist. We also give a partial answer (Theorem 3.5) to the open problem put forward by S. Fitzpatrick (1989, Bull. Austral. Math. Soc.39, 233-238).