Derivatives of Generalized Distance Functions and Existence of Generalized Nearest Points

Chong Li, R. Ni
{"title":"Derivatives of Generalized Distance Functions and Existence of Generalized Nearest Points","authors":"Chong Li, R. Ni","doi":"10.1006/jath.2001.3651","DOIUrl":null,"url":null,"abstract":"The relationship between directional derivatives of generalized distance functions and the existence of generalized nearest points in Banach spaces is investigated. Let G be any nonempty closed subset in a compact locally uniformly convex Banach space. It is proved that if the one-sided directional derivative of the generalized distance function associated to G at x equals to 1 or -1, then the generalized nearest points to x from G exist. We also give a partial answer (Theorem 3.5) to the open problem put forward by S. Fitzpatrick (1989, Bull. Austral. Math. Soc.39, 233-238).","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

The relationship between directional derivatives of generalized distance functions and the existence of generalized nearest points in Banach spaces is investigated. Let G be any nonempty closed subset in a compact locally uniformly convex Banach space. It is proved that if the one-sided directional derivative of the generalized distance function associated to G at x equals to 1 or -1, then the generalized nearest points to x from G exist. We also give a partial answer (Theorem 3.5) to the open problem put forward by S. Fitzpatrick (1989, Bull. Austral. Math. Soc.39, 233-238).
广义距离函数的导数与广义最近点的存在性
研究了Banach空间中广义距离函数的方向导数与广义最近点存在性的关系。设G为紧致局部一致凸巴拿赫空间中的任意非空闭子集。证明了如果与G有关的广义距离函数在x处的单侧方向导数等于1或-1,则G到x的广义最近点存在。本文还对S. Fitzpatrick (1989, Bull.)提出的开放问题给出了部分答案(定理3.5)。南国。数学。Soc.39, 233 - 238)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信