Approximation Numbers of Identity Operators between Symmetric Sequence Spaces

A. Hinrichs
{"title":"Approximation Numbers of Identity Operators between Symmetric Sequence Spaces","authors":"A. Hinrichs","doi":"10.1006/jath.2002.3726","DOIUrl":null,"url":null,"abstract":"We prove asymptotic formulas for the behavior of approximation quantities of identity operators between symmetric sequence spaces. These formulas extend recent results of Defant, Mastylo, and Michels for identities lpn←Fn with an n-dimensional symmetric normed space Fn with p-concavity conditions on Fn and 1 ≤ p ≤ 2. We consider the general case of identities En←Fn with weak assumptions on the asymptotic behavior of the fundamental sequences of the n-dimensional symmetric spaces En and Fn. We give applications to Lorentz and Orlicz sequence spaces, again considerably generalizing results of Pietsch, Defant, Mastylo, and Michels.","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"123 40","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2002.3726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We prove asymptotic formulas for the behavior of approximation quantities of identity operators between symmetric sequence spaces. These formulas extend recent results of Defant, Mastylo, and Michels for identities lpn←Fn with an n-dimensional symmetric normed space Fn with p-concavity conditions on Fn and 1 ≤ p ≤ 2. We consider the general case of identities En←Fn with weak assumptions on the asymptotic behavior of the fundamental sequences of the n-dimensional symmetric spaces En and Fn. We give applications to Lorentz and Orlicz sequence spaces, again considerably generalizing results of Pietsch, Defant, Mastylo, and Michels.
对称序列空间间恒等算子的近似数
证明了对称序列空间间恒等算子近似量的渐近性质。这些公式推广了Defant、Mastylo和Michels关于n维对称赋范空间Fn的恒等式lpn←Fn的最新结果,该n维对称赋范空间Fn在Fn和1≤p≤2上具有p-凹凸性条件。利用n维对称空间En和Fn的基本序列的渐近性的弱假设,研究了n维对称空间En和Fn的一般恒等式En←Fn。我们给出了Lorentz和Orlicz序列空间的应用,再次极大地推广了Pietsch, Defant, Mastylo和Michels的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信