Feature Filtering for Instance-Specific Algorithm Configuration

Christian Kroer, Y. Malitsky
{"title":"Feature Filtering for Instance-Specific Algorithm Configuration","authors":"Christian Kroer, Y. Malitsky","doi":"10.1109/ICTAI.2011.132","DOIUrl":null,"url":null,"abstract":"Instance-Specific Algorithm Configuration (ISAC) is a novel general technique for automatically generating and tuning algorithm portfolios. The approach has been very successful in practice, but up to now it has been committed to using all the features it was provided. However, traditional feature filtering techniques are not applicable, requiring multiple computationally expensive tuning steps during the evaluation stage. To this end, we show three new evaluation functions that use precomputed runtimes of a collection of untuned solvers to quickly evaluate subsets of features. One of our proposed functions even shows how to generate such an effective collection of solvers when only one highly parameterized solver is available. Using these new functions, we show that the number of features used by ISAC can be reduced to less than a quarter of the original number while often providing significant performance gains. We present numerical results on both SAT and CP domains.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Instance-Specific Algorithm Configuration (ISAC) is a novel general technique for automatically generating and tuning algorithm portfolios. The approach has been very successful in practice, but up to now it has been committed to using all the features it was provided. However, traditional feature filtering techniques are not applicable, requiring multiple computationally expensive tuning steps during the evaluation stage. To this end, we show three new evaluation functions that use precomputed runtimes of a collection of untuned solvers to quickly evaluate subsets of features. One of our proposed functions even shows how to generate such an effective collection of solvers when only one highly parameterized solver is available. Using these new functions, we show that the number of features used by ISAC can be reduced to less than a quarter of the original number while often providing significant performance gains. We present numerical results on both SAT and CP domains.
针对特定实例算法配置的特征过滤
实例特定算法配置(ISAC)是一种新的通用技术,用于自动生成和调优算法组合。这种方法在实践中非常成功,但到目前为止,它一直致力于使用它所提供的所有功能。然而,传统的特征滤波技术并不适用,在评估阶段需要多个计算代价高昂的调优步骤。为此,我们展示了三个新的评估函数,它们使用预先计算的未调优求解器集合的运行时间来快速评估特征子集。我们提出的一个函数甚至显示了当只有一个高度参数化的求解器可用时,如何生成这样一个有效的求解器集合。使用这些新函数,我们发现ISAC使用的特性数量可以减少到不到原始数量的四分之一,同时通常提供显著的性能提升。我们给出了SAT和CP域的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信