Real-Time Processing of Big Data Streams: Lifecycle, Tools, Tasks, and Challenges

Fatih Gürcan, Muhammet Berigel
{"title":"Real-Time Processing of Big Data Streams: Lifecycle, Tools, Tasks, and Challenges","authors":"Fatih Gürcan, Muhammet Berigel","doi":"10.1109/ISMSIT.2018.8567061","DOIUrl":null,"url":null,"abstract":"In today's technological environments, the vast majority of big data-driven applications and solutions are based on real-time processing of streaming data. The real-time processing and analytics of big data streams play a crucial role in the development of big-data driven applications and solutions. From this perspective, this paper defines a lifecycle for the real-time big data processing. It describes existing tools, tasks, and frameworks by associating them with the phases of the lifecycle, which include data ingestion, data storage, stream processing, analytical data store, and analysis and reporting. The paper also investigates the real-time big data processing tools consisting of Flume, Kafka, Nifi, Storm, Spark Streaming, S4, Flink, Samza, Hbase, Hive, Cassandra, Splunk, and Sap Hana. As well as, it discusses the up-to-date challenges of the real-time big data processing such as “volume, variety and heterogeneity”, “data capture and storage”, “inconsistency and incompleteness”, “scalability”, “real-time processing”, “data visualization”, “skill requirements”, and “privacy and security”. This paper may provide valuable insights into the understanding of the lifecycle, related tools and tasks, and challenges of real-time big data processing.","PeriodicalId":299682,"journal":{"name":"2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSIT.2018.8567061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In today's technological environments, the vast majority of big data-driven applications and solutions are based on real-time processing of streaming data. The real-time processing and analytics of big data streams play a crucial role in the development of big-data driven applications and solutions. From this perspective, this paper defines a lifecycle for the real-time big data processing. It describes existing tools, tasks, and frameworks by associating them with the phases of the lifecycle, which include data ingestion, data storage, stream processing, analytical data store, and analysis and reporting. The paper also investigates the real-time big data processing tools consisting of Flume, Kafka, Nifi, Storm, Spark Streaming, S4, Flink, Samza, Hbase, Hive, Cassandra, Splunk, and Sap Hana. As well as, it discusses the up-to-date challenges of the real-time big data processing such as “volume, variety and heterogeneity”, “data capture and storage”, “inconsistency and incompleteness”, “scalability”, “real-time processing”, “data visualization”, “skill requirements”, and “privacy and security”. This paper may provide valuable insights into the understanding of the lifecycle, related tools and tasks, and challenges of real-time big data processing.
大数据流的实时处理:生命周期、工具、任务和挑战
在当今的技术环境中,绝大多数大数据驱动的应用和解决方案都是基于流数据的实时处理。大数据流的实时处理和分析在大数据驱动应用和解决方案的开发中发挥着至关重要的作用。从这个角度出发,本文定义了实时大数据处理的生命周期。它通过将现有的工具、任务和框架与生命周期的各个阶段相关联来描述它们,这些阶段包括数据摄取、数据存储、流处理、分析数据存储以及分析和报告。本文还研究了Flume、Kafka、Nifi、Storm、Spark Streaming、S4、Flink、Samza、Hbase、Hive、Cassandra、Splunk、Sap Hana等实时大数据处理工具。讨论了实时大数据处理面临的“海量、多样性和异质性”、“数据捕获和存储”、“不一致和不完整”、“可扩展性”、“实时处理”、“数据可视化”、“技能要求”、“隐私和安全”等最新挑战。本文可能为理解实时大数据处理的生命周期、相关工具和任务以及挑战提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信