A 65nm compressive-sensing time-based ADC with embedded classification and INL-aware training for arrhythmia detection

A. Anvesha, Shaojie Xu, J. Romberg, A. Raychowdhury
{"title":"A 65nm compressive-sensing time-based ADC with embedded classification and INL-aware training for arrhythmia detection","authors":"A. Anvesha, Shaojie Xu, J. Romberg, A. Raychowdhury","doi":"10.1109/BIOCAS.2017.8325555","DOIUrl":null,"url":null,"abstract":"In-sensor analytics are in high demand to avoid high computation at server back end. Traditional analog sensors require high supply voltage in the range of 1–1.2V even when digital supplies are scaled down to 0.4V-0.6V. We propose a time-based compressed-domain analog-to-digital (ADC) based encoder with parallel processing units for arrhythmia classification. The computationally enhanced ADC performs in-situ compression along with analog to digital conversion. An accuracy of 84% accuracy is achieved with 10.5nJ energy per classification for an 8X compression ratio.","PeriodicalId":361477,"journal":{"name":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2017.8325555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In-sensor analytics are in high demand to avoid high computation at server back end. Traditional analog sensors require high supply voltage in the range of 1–1.2V even when digital supplies are scaled down to 0.4V-0.6V. We propose a time-based compressed-domain analog-to-digital (ADC) based encoder with parallel processing units for arrhythmia classification. The computationally enhanced ADC performs in-situ compression along with analog to digital conversion. An accuracy of 84% accuracy is achieved with 10.5nJ energy per classification for an 8X compression ratio.
一种65nm基于压缩感知时间的ADC,具有嵌入式分类和inl感知训练,用于心律失常检测
为了避免服务器后端的高计算量,传感器内分析的需求越来越大。传统的模拟传感器需要1-1.2V范围内的高电源电压,即使数字电源缩小到0.4V-0.6V。我们提出了一个基于时间的压缩域模数(ADC)编码器与并行处理单元心律失常分类。计算增强的ADC执行原位压缩以及模拟到数字转换。在8倍压缩比下,每次分类能量为10.5nJ,准确率达到84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信