{"title":"Optimal content delivery with network coding","authors":"Derek Leong, T. Ho, R. Cathey","doi":"10.1109/CISS.2009.5054756","DOIUrl":null,"url":null,"abstract":"We present a unified linear program formulation for optimal content delivery in content delivery networks (CDNs), taking into account various costs and constraints associated with content dissemination from the origin server to storage nodes, data storage, and the eventual fetching of content from storage nodes by end users. Our formulation can be used to achieve a variety of performance goals and system behavior, including the bounding of fetch delay, load balancing, and robustness against node and arc failures. Simulation results suggest that our formulation performs significantly better than the traditional minimum k-median formulation for the delivery of multiple content, even under modest circumstances (small network, few objects, low storage budget, low dissemination costs).","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We present a unified linear program formulation for optimal content delivery in content delivery networks (CDNs), taking into account various costs and constraints associated with content dissemination from the origin server to storage nodes, data storage, and the eventual fetching of content from storage nodes by end users. Our formulation can be used to achieve a variety of performance goals and system behavior, including the bounding of fetch delay, load balancing, and robustness against node and arc failures. Simulation results suggest that our formulation performs significantly better than the traditional minimum k-median formulation for the delivery of multiple content, even under modest circumstances (small network, few objects, low storage budget, low dissemination costs).