Recognition of the Hungarian fingerspelling alphabet using Recurrent Neural Network

Bence Dankó, Gábor Kertész
{"title":"Recognition of the Hungarian fingerspelling alphabet using Recurrent Neural Network","authors":"Bence Dankó, Gábor Kertész","doi":"10.1109/SAMI.2019.8782725","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce a Recurrent Convolutional Neural Network based on depth data to recognize the signs of the Hungarian fingerspelling alphabet. The training dataset contains depth data of 27 static and 15 dynamic signs. A 88.6% classification accuracy was measured for during the test with the recommended model in this paper, which is a special type of recurrent network containing LSTM and convolutional layers.","PeriodicalId":240256,"journal":{"name":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2019.8782725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to introduce a Recurrent Convolutional Neural Network based on depth data to recognize the signs of the Hungarian fingerspelling alphabet. The training dataset contains depth data of 27 static and 15 dynamic signs. A 88.6% classification accuracy was measured for during the test with the recommended model in this paper, which is a special type of recurrent network containing LSTM and convolutional layers.
用递归神经网络识别匈牙利语的拼写字母
本文的目的是引入一种基于深度数据的循环卷积神经网络来识别匈牙利语拼写字母的符号。训练数据集包含27个静态符号和15个动态符号的深度数据。本文推荐的模型是一种特殊类型的包含LSTM层和卷积层的递归网络,在测试过程中,分类准确率达到了88.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信