Map/reduce on EMF models

MDHPCL '12 Pub Date : 2012-10-02 DOI:10.1145/2446224.2446231
M. Scheidgen, A. Zubow
{"title":"Map/reduce on EMF models","authors":"M. Scheidgen, A. Zubow","doi":"10.1145/2446224.2446231","DOIUrl":null,"url":null,"abstract":"Map/Reduce is the programming model in cloud computing. It enables the processing of data sets of unprecedented size, but it also delegates the handling of complex data structures completely to its users. In this paper, we apply Map/Reduce to EMF-based models to cope with complex data structures in the familiar an easy-to-use and type-safe EMF fashion, combining the advantages of both technologies. We use our framework EMF-Fragments to store very large EMF models in distributed key-value stores (Hadoop's Hbase). This allows us to build Map/Reduce programs that use EMF's generated APIs to process those very large EMF-models. We present our framework and two example Map/Reduce jobs for querying software models and for analyzing sensor data represented as EMF-models.","PeriodicalId":162559,"journal":{"name":"MDHPCL '12","volume":"190 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MDHPCL '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2446224.2446231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Map/Reduce is the programming model in cloud computing. It enables the processing of data sets of unprecedented size, but it also delegates the handling of complex data structures completely to its users. In this paper, we apply Map/Reduce to EMF-based models to cope with complex data structures in the familiar an easy-to-use and type-safe EMF fashion, combining the advantages of both technologies. We use our framework EMF-Fragments to store very large EMF models in distributed key-value stores (Hadoop's Hbase). This allows us to build Map/Reduce programs that use EMF's generated APIs to process those very large EMF-models. We present our framework and two example Map/Reduce jobs for querying software models and for analyzing sensor data represented as EMF-models.
在EMF模型上映射/缩减
Map/Reduce是云计算中的编程模型。它能够处理空前规模的数据集,但它也将复杂数据结构的处理完全委托给了用户。在本文中,我们将Map/Reduce应用到基于EMF的模型中,以熟悉的易于使用和类型安全的EMF方式处理复杂的数据结构,结合了这两种技术的优点。我们使用我们的框架EMF- fragments在分布式键值存储(Hadoop的Hbase)中存储非常大的EMF模型。这允许我们构建Map/Reduce程序,这些程序使用EMF生成的api来处理那些非常大的EMF模型。我们给出了我们的框架和两个Map/Reduce作业示例,用于查询软件模型和分析表示为emf模型的传感器数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信