Large Margin Coupled Feature Learning for cross-modal face recognition

Yi Jin, Jiwen Lu, Q. Ruan
{"title":"Large Margin Coupled Feature Learning for cross-modal face recognition","authors":"Yi Jin, Jiwen Lu, Q. Ruan","doi":"10.1109/ICB.2015.7139097","DOIUrl":null,"url":null,"abstract":"This paper presents a Large Margin Coupled Feature Learning (LMCFL) method for cross-modal face recognition, which recognizes persons from facial images captured from different modalities. Most previous cross-modal face recognition methods utilize hand-crafted feature descriptors for face representation, which require strong prior knowledge to engineer and cannot exploit data-adaptive characteristics in feature extraction. In this work, we propose a new LMCFL method to learn coupled face representation at the image pixel level by jointly utilizing the discriminative information of face images in each modality and the correlation information of face images from different modalities. Thus, LMCFL can maximize the margin between positive face pairs and negative face pairs in each modality, and maximize the correlation of face images from different modalities, where discriminative face features can be automatically learned in a discriminative and data-driven way. Our LMCFL is validated on two different cross-modal face recognition applications, and the experimental results demonstrate the effectiveness of our proposed approach.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a Large Margin Coupled Feature Learning (LMCFL) method for cross-modal face recognition, which recognizes persons from facial images captured from different modalities. Most previous cross-modal face recognition methods utilize hand-crafted feature descriptors for face representation, which require strong prior knowledge to engineer and cannot exploit data-adaptive characteristics in feature extraction. In this work, we propose a new LMCFL method to learn coupled face representation at the image pixel level by jointly utilizing the discriminative information of face images in each modality and the correlation information of face images from different modalities. Thus, LMCFL can maximize the margin between positive face pairs and negative face pairs in each modality, and maximize the correlation of face images from different modalities, where discriminative face features can be automatically learned in a discriminative and data-driven way. Our LMCFL is validated on two different cross-modal face recognition applications, and the experimental results demonstrate the effectiveness of our proposed approach.
跨模态人脸识别的大裕度耦合特征学习
提出了一种基于大余量耦合特征学习(LMCFL)的跨模态人脸识别方法,从不同模态采集的人脸图像中识别人脸。以往的跨模态人脸识别方法大多使用手工制作的特征描述符来表示人脸,这需要很强的先验知识来进行工程设计,并且不能在特征提取中利用数据自适应特征。在这项工作中,我们提出了一种新的LMCFL方法,通过联合利用每个模态的人脸图像的判别信息和不同模态的人脸图像的相关信息来学习图像像素级的耦合人脸表示。因此,LMCFL可以最大化每个模态下正面人脸对和负面人脸对之间的差值,并最大化不同模态下人脸图像的相关性,从而以判别和数据驱动的方式自动学习具有判别性的人脸特征。我们的LMCFL在两种不同的跨模态人脸识别应用中进行了验证,实验结果证明了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信