Reduced Order Model of a Neuron-Electrode Interface Coupled to a Hodgkin-Huxley Model

Ulrike Fitzer, D. Hohlfeld, T. Bechtold
{"title":"Reduced Order Model of a Neuron-Electrode Interface Coupled to a Hodgkin-Huxley Model","authors":"Ulrike Fitzer, D. Hohlfeld, T. Bechtold","doi":"10.11159/icebs22.136","DOIUrl":null,"url":null,"abstract":"– The electric properties of an interface between an electrode and a neuron are highly dependent on interface geometry and other parameters. Finite element models can be used to study these properties to a certain extent. Unfortunately, such models are computationally very expensive. By reducing these models, the computational time can be decreased. In this work, we use Krylov-subspace based model order reduction to reduce a simplified, linearized finite element model of an electrode-neuron interface. This facilitates the coupling to the Hodgkin-Huxley model at system level and reduces the computational time considerably. The accuracy of the original finite element model is preserved to a large extent.","PeriodicalId":294100,"journal":{"name":"World Congress on Electrical Engineering and Computer Systems and Science","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Congress on Electrical Engineering and Computer Systems and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icebs22.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

– The electric properties of an interface between an electrode and a neuron are highly dependent on interface geometry and other parameters. Finite element models can be used to study these properties to a certain extent. Unfortunately, such models are computationally very expensive. By reducing these models, the computational time can be decreased. In this work, we use Krylov-subspace based model order reduction to reduce a simplified, linearized finite element model of an electrode-neuron interface. This facilitates the coupling to the Hodgkin-Huxley model at system level and reduces the computational time considerably. The accuracy of the original finite element model is preserved to a large extent.
神经元-电极界面与霍奇金-赫胥黎模型耦合的降阶模型
-电极和神经元之间界面的电学特性高度依赖于界面几何形状和其他参数。有限元模型可以在一定程度上研究这些特性。不幸的是,这样的模型在计算上非常昂贵。通过简化这些模型,可以减少计算时间。在这项工作中,我们使用基于krylov子空间的模型阶数约简来简化电极-神经元界面的线性化有限元模型。这有利于在系统级上与霍奇金-赫胥黎模型的耦合,大大减少了计算时间。在很大程度上保留了原有限元模型的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信