Forecasting the State of Infocommunication Systems Using Time Series with Defined Fractal Properties

O. Sheluhin, M. Polkovnikov, D. Magomedova
{"title":"Forecasting the State of Infocommunication Systems Using Time Series with Defined Fractal Properties","authors":"O. Sheluhin, M. Polkovnikov, D. Magomedova","doi":"10.1109/SYNCHROINFO49631.2020.9166054","DOIUrl":null,"url":null,"abstract":"The article developed a method for predicting the profile of the normal functioning of infocommunication systems formed on the basis of historical values by measuring the fractal dimension of the current increments of the predicted process. Instantaneous amplitudes of increments are used to find optimal combinations of the predicted process by the criterion of the minimum distance between the experimental and predicted functions. The approach is based on a combination of an effective apparatus for analyzing the fractal dimension of time series and modeling.","PeriodicalId":255578,"journal":{"name":"2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNCHROINFO49631.2020.9166054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article developed a method for predicting the profile of the normal functioning of infocommunication systems formed on the basis of historical values by measuring the fractal dimension of the current increments of the predicted process. Instantaneous amplitudes of increments are used to find optimal combinations of the predicted process by the criterion of the minimum distance between the experimental and predicted functions. The approach is based on a combination of an effective apparatus for analyzing the fractal dimension of time series and modeling.
用具有定义分形性质的时间序列预测信息通信系统的状态
本文提出了一种通过测量预测过程当前增量的分形维数来预测信息通信系统在历史值基础上形成的正常功能轮廓的方法。以实验函数与预测函数之间的最小距离为准则,利用增量的瞬时幅值来寻找预测过程的最佳组合。该方法是将一种有效的时间序列分形维数分析方法与建模方法相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信