LoRa Signal Demodulation Using Deep Learning, a Time-Domain Approach

Kosta Dakic, Bassel Al Homssi, A. Al-Hourani, M. Lech
{"title":"LoRa Signal Demodulation Using Deep Learning, a Time-Domain Approach","authors":"Kosta Dakic, Bassel Al Homssi, A. Al-Hourani, M. Lech","doi":"10.1109/VTC2021-Spring51267.2021.9448711","DOIUrl":null,"url":null,"abstract":"The LoRa modulation scheme is becoming one of the most adopted Internet of Things wireless physical layer due to its ability to transmit data over long distances with low power requirements. Typical demodulation techniques for LoRa utilize variants of non-coherent Frequency Shift Keying demodulation. This paper aims to capitalize on the robustness of deep learning techniques, specifically by using convolutional neural networks to demodulate LoRa symbols. We achieve this by building a dataset consisting of emulated time-domain LoRa symbols across a range of channel impairments; namely, we examine additive white Gaussian noise together with carrier frequency offset and time offset. The presented results show an improvement when utilizing deep learning over typical non-coherent detection while performing very close to the optimal matched filter.","PeriodicalId":194840,"journal":{"name":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The LoRa modulation scheme is becoming one of the most adopted Internet of Things wireless physical layer due to its ability to transmit data over long distances with low power requirements. Typical demodulation techniques for LoRa utilize variants of non-coherent Frequency Shift Keying demodulation. This paper aims to capitalize on the robustness of deep learning techniques, specifically by using convolutional neural networks to demodulate LoRa symbols. We achieve this by building a dataset consisting of emulated time-domain LoRa symbols across a range of channel impairments; namely, we examine additive white Gaussian noise together with carrier frequency offset and time offset. The presented results show an improvement when utilizing deep learning over typical non-coherent detection while performing very close to the optimal matched filter.
LoRa信号解调使用深度学习,一种时域方法
LoRa调制方案正成为采用最多的物联网无线物理层之一,因为它能够以低功耗要求长距离传输数据。LoRa的典型解调技术利用非相干移频键控解调的变体。本文旨在利用深度学习技术的鲁棒性,特别是通过使用卷积神经网络来解调LoRa符号。我们通过建立一个由一系列信道损伤的仿真时域LoRa符号组成的数据集来实现这一点;也就是说,我们将加性高斯白噪声与载波频率偏移和时间偏移一起研究。所提出的结果表明,当使用深度学习时,在典型的非相干检测上有了改进,同时执行非常接近最佳匹配滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信