Scalable concurrency debugging with distributed graph processing

Long Zheng, Xiaofei Liao, Hai Jin, Jieshan Zhao, Qinggang Wang
{"title":"Scalable concurrency debugging with distributed graph processing","authors":"Long Zheng, Xiaofei Liao, Hai Jin, Jieshan Zhao, Qinggang Wang","doi":"10.1145/3168817","DOIUrl":null,"url":null,"abstract":"Existing constraint-solving-based technique enables an efficient and high-coverage concurrency debugging. Yet, there remains a significant gap between the state of the art and the state of the programming practices for scaling to handle long-running execution of programs. In this paper, we revisit the scalability problem of state-of-the-art constraint-solving-based technique. Our key insight is that concurrency debugging for many real-world bugs can be turned into a graph traversal problem. We therefore present GraphDebugger, a novel debugging framework to enable the scalable concurrency analysis on program graphs via a tailored graph-parallel analysis in a distributed environment. It is verified that GraphDebugger is more capable than CLAP in reproducing the real-world bugs that involve a complex concurrency analysis. Our extensive evaluation on 7 real-world programs shows that, GraphDebugger (deployed on an 8-node EC2 like cluster) is significantly efficient to reproduce concurrency bugs within 1∼8 minutes while CLAP does so with 1∼30 hours, or even without returning solutions.","PeriodicalId":103558,"journal":{"name":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Symposium on Code Generation and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3168817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Existing constraint-solving-based technique enables an efficient and high-coverage concurrency debugging. Yet, there remains a significant gap between the state of the art and the state of the programming practices for scaling to handle long-running execution of programs. In this paper, we revisit the scalability problem of state-of-the-art constraint-solving-based technique. Our key insight is that concurrency debugging for many real-world bugs can be turned into a graph traversal problem. We therefore present GraphDebugger, a novel debugging framework to enable the scalable concurrency analysis on program graphs via a tailored graph-parallel analysis in a distributed environment. It is verified that GraphDebugger is more capable than CLAP in reproducing the real-world bugs that involve a complex concurrency analysis. Our extensive evaluation on 7 real-world programs shows that, GraphDebugger (deployed on an 8-node EC2 like cluster) is significantly efficient to reproduce concurrency bugs within 1∼8 minutes while CLAP does so with 1∼30 hours, or even without returning solutions.
可扩展的并发调试与分布式图形处理
现有的基于约束求解的技术支持高效、高覆盖率的并发调试。然而,目前的技术水平和编程实践水平之间仍然存在很大的差距,无法扩展以处理程序的长时间执行。在本文中,我们重新审视了基于最先进的约束求解技术的可扩展性问题。我们的主要见解是,许多现实世界bug的并发调试可以变成一个图遍历问题。因此,我们提出了GraphDebugger,这是一个新的调试框架,通过在分布式环境中定制的图并行分析,可以对程序图进行可扩展的并发分析。经过验证,GraphDebugger在再现涉及复杂并发性分析的真实bug方面比CLAP更有能力。我们对7个实际程序的广泛评估表明,GraphDebugger(部署在8个节点的类似EC2的集群上)在1 ~ 8分钟内重现并发错误的效率非常高,而CLAP需要1 ~ 30个小时,甚至不返回解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信