Text Document Clustering with Hybrid Feature Selection

Asmaa Benghabrit, B. Frikh, B. Ouhbi, E. Zemmouri, Hicham Behja
{"title":"Text Document Clustering with Hybrid Feature Selection","authors":"Asmaa Benghabrit, B. Frikh, B. Ouhbi, E. Zemmouri, Hicham Behja","doi":"10.1145/2539150.2539225","DOIUrl":null,"url":null,"abstract":"Finding the appropriate information and understanding to human research is a delicate task when dealing with an outstanding number of unstructured texts created daily. Hence the objective of clustering algorithms which are part of the powerful text mining tools. In this paper, we propose a novel text document clustering based on a new hybrid feature selection method that we call HFSM. This technique extracts statistical and semantic relevant terms to pilot the clustering mechanism. The experiments conducted on Reuters corpus demonstrate the practical aspects of our algorithm and show that it generates more accurate clustering than the one obtained by other existing algorithms.","PeriodicalId":424918,"journal":{"name":"International Conference on Information Integration and Web-based Applications & Services","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Integration and Web-based Applications & Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2539150.2539225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Finding the appropriate information and understanding to human research is a delicate task when dealing with an outstanding number of unstructured texts created daily. Hence the objective of clustering algorithms which are part of the powerful text mining tools. In this paper, we propose a novel text document clustering based on a new hybrid feature selection method that we call HFSM. This technique extracts statistical and semantic relevant terms to pilot the clustering mechanism. The experiments conducted on Reuters corpus demonstrate the practical aspects of our algorithm and show that it generates more accurate clustering than the one obtained by other existing algorithms.
混合特征选择的文本文档聚类
在处理每天产生的大量非结构化文本时,为人类研究找到适当的信息和理解是一项微妙的任务。因此,聚类算法的目标是强大的文本挖掘工具的一部分。在本文中,我们提出了一种新的基于混合特征选择的文本文档聚类方法,我们称之为HFSM。该技术提取统计和语义相关的术语来引导聚类机制。在路透社语料库上进行的实验证明了该算法的实用性,并表明该算法比其他现有算法产生的聚类更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信