Metareasoning for Safe Decision Making in Autonomous Systems

Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein
{"title":"Metareasoning for Safe Decision Making in Autonomous Systems","authors":"Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein","doi":"10.1109/icra46639.2022.9811887","DOIUrl":null,"url":null,"abstract":"Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.
自主系统安全决策的元推理
尽管专家们仔细地定义了自主系统的高层决策模型,但在运行过程中,保证每个场景的安全是不可行的。因此,我们提出了一种安全元推理系统,该系统优化了系统安全问题的严重性和对系统任务的干扰:系统并行执行一个任务进程,该任务进程完成了指定的任务,而每个安全进程都通过一个冲突解决器来解决指定的安全问题。本文给出了安全元推理系统的正式定义,安全过程的推荐算法,冲突解决器的仲裁算法,我们的方法在行星漫游者探测中的应用,并在仿真中证明了我们的方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信