Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein
{"title":"Metareasoning for Safe Decision Making in Autonomous Systems","authors":"Justin Svegliato, Connor Basich, Sandhya Saisubramanian, S. Zilberstein","doi":"10.1109/icra46639.2022.9811887","DOIUrl":null,"url":null,"abstract":"Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Although experts carefully specify the high-level decision-making models in autonomous systems, it is infeasible to guarantee safety across every scenario during operation. We therefore propose a safety metareasoning system that optimizes the severity of the system's safety concerns and the interference to the system's task: the system executes in parallel a task process that completes a specified task and safety processes that each address a specified safety concern with a conflict resolver for arbitration. This paper offers a formal definition of a safety metareasoning system, a recommendation algorithm for a safety process, an arbitration algorithm for a conflict resolver, an application of our approach to planetary rover exploration, and a demonstration that our approach is effective in simulation.